I have a data frame
Name Subset Type System
A00 IU00-A OP A
A00 IT00 PP A
B01 IT-01A PP B
B01 IU OP B
B03 IM-09-B LP A
B03 IM03A OP A
B03 IT-09 OP A
D09 IT OP A
D09 IM LP B
D09 IM OP A
The abouve dataframe, I need to convert it based on Grouping Name and Subset strings extracted using extractall(r'[^a-zA-Z]*([a-zA-Z] )[^,]*').groupby(level=0).agg(', '.join)
. And Systems, Subsets Should be mentioned serially according to Types.
Output Example:
Subset Cluster Type Cluster Name System Subsets
IU,IT OP,PP A00,B01 A,A,B,B IU00-A,IT00
IM,IM,IT LP, OP, OP B03, D09 A,A,A,A,B,A IM-09-B,IM03A,IT-09,IT,IM,IM
CodePudding user response:
Double groupby
where we first group by "Name", then again by "Subset Cluster" and "Type Cluster" does the trick:
out = df.assign(**{'Subset Cluster': df['Subset'].str.extractall(r'[^a-zA-Z]*([a-zA-Z] )[^,]*')\
.groupby(level=0)[0].agg(', '.join)})\
.sort_values(by=df.columns.tolist())\
.groupby('Name', as_index=False).agg(', '.join).rename(columns={'Type':'Type Cluster'})\
.groupby(['Subset Cluster', 'Type Cluster'], as_index=False).agg(', '.join)
Output:
Subset Cluster Type Cluster Name Subset System
0 IM, IM, IT LP, OP, OP B03, D09 IM-09-B, IM03A, IT-09, IM, IM, IT A, A, A, B, A, A
1 IT, IU PP, OP A00, B01 IT00, IU00-A, IT-01A, IU A, A, B, B
CodePudding user response:
Beginning from your dataframe, in order to achieve your result I would use two aggregating operations since you need to do two groupings, relatively to Name
and Subset Cluster
. Here's the way I would do it:
df.rename(columns={'Subset': 'Subset Cluster'}, inplace=True)
df['Subsets'] = df['Subset Cluster'].apply(lambda s: s[:2])
df = df.groupby('Name').agg(lambda col: ', '.join(sorted(list(col))) ).reset_index()
df = df.groupby('Subsets').agg(lambda col: ', '.join(sorted(list(col))) ).reset_index()
df