I am trying to implement a joint model using Keras, and this is the architecture of the model.
However, I have difficulty in the concatenation of inputs from the subnetwork and the main network. The following are my codes:
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Reshape, Concatenate
def Autoencoder():
input = layers.Input(shape=(256, 256, 5))
layers.Flatten()
x = layers.Conv2D(32, (3, 3), activation="relu", padding="same")(input)
x = layers.Conv2D(32, (3, 3), activation="relu", padding="same")(x)
x = layers.MaxPooling2D((2, 2), padding="same")(x)
x = layers.Conv2D(64, (3, 3), activation="relu", padding="same")(x)
x = layers.Conv2D(64, (3, 3), activation="relu", padding="same")(x)
x = layers.MaxPooling2D((2, 2), padding="same")(x)
x = layers.Conv2D(128, (3, 3), activation="relu", padding="same")(x)
x = layers.Conv2D(128, (3, 3), activation="relu", padding="same")(x)
x = layers.MaxPooling2D((2, 2), padding="same", name='last_layer')(x)
autoencoder = Model(input, x)
return autoencoder.get_layer('last_layer')
def Subnetwork():
input = layers.Input(shape=(12,1))
x = layers.Flatten()(input)
x = layers.Dense(4096, activation="relu")(x)
x = layers.Reshape((32, 32, 4), name='last_layer')(x)
subnetwork = Model(input, x)
return subnetwork.get_layer('last_layer')
def Joint():
layer_autoencoder = Autoencoder()
layer_subnetwork = Subnetwork()
merged= Concatenate([layer_autoencoder, layer_subnetwork])
model = Model(inputs=[layer_autoencoder, layer_subnetwork], outputs=merged)
return model
Model = Joint()
Model.summary()
The error message looks like this:
ValueError: Found unexpected instance while processing input tensors for keras functional model. Expecting KerasTensor which is from tf.keras.Input() or output from keras layer call(). Got: <keras.layers.pooling.MaxPooling2D object at 0x7fbfd8634990>
Do anyone know what causes the error and what is the correct solution?
CodePudding user response:
You should redefine the input layer also in the Joint
model
def Joint():
input_autoencoder = layers.Input(shape=(256, 256, 5)) ### define input layer
layer_autoencoder = Autoencoder()(input_autoencoder) ### pass input to Autoencoder
input_subnetwork = layers.Input(shape=(12, 1)) ### define input layer
layer_subnetwork = Subnetwork()(input_subnetwork) ### pass input to Subnetwork
merged= Concatenate()([layer_autoencoder, layer_subnetwork]) ### it's Concatenate()([...]) not Concatenate([...])
model = Model([input_autoencoder, input_subnetwork], merged) ### use correct inputs
return model
Pay attention also to Autoencoder
and Subnetwork
. They must return TF model instances. So they become:
def Autoencoder():
...
autoencoder = Model(input, x)
return autoencoder
def Subnetwork():
...
subnetwork = Model(input, x)
return subnetwork