Home > Software design >  how C programming allows the hardware level control?
how C programming allows the hardware level control?

Time:04-20

I read somewhere that learning c programming gives us the actual idea of what is happening in the hardware level i.e. C programming teach us the real programming like how the memory is being utilised, how the hardware resources are used and it allows us to interfere with hardware level stuff like we are the one who can use and can control these resources in our own way as we want but other high level languages don't allow this. Now I am learning C programming but I am not able to understand that how I am controlling my hardware resource ? I have no idea how it is allowing us to use my computer resources independently.

CodePudding user response:

In user mode, using a 32 or 64 bits multitask operating system, even C won't show you a tiny bit of hardware - lowest level you'll see is operating system itself.

You may ask the OS to draw a window, to save a file, to send data through a network - you won't touch directly GPU, disk controller or Ethernet MAC/Phy chip to be able to do that. In fact, you probably won't even be able to tell which KIND of hardware is behind... Is it a Nvidia card? An old SVGA one? A mechanical hard drive, or a NVMe drive? A 10BaseT NIC, or a 10 Gb/s optical fiber network card? You can't tell just with C. Only OS knows it, and it's OS that may tell it. You'll get that in C exactly like you would have got it with, let's say, Python.


To see hardware and how it works, you'll need to be able to touch hardware with software instructions. On a modern OS, it means being in kernel mode. Or to use an old-timer OS, like MS-DOS, or even no OS at all - called "bare metal development", often encountered with microcontrollers like Arduino and similar devices.

In this world, you'll need to learn what a register is, how GPIO works, how you address an UART, and if you use specific controllers, you'll have to read (and understand!) their datasheets if you want to make them work.

Indeed, it's often easier to do such low-level code in C, rather than in Assembler - especially since each CPU has its own assembler, so that may become a lot of languages to master in fine. But it's not mandatory. It can also be done with any language, as long as you can produce an absolute (=relocated), standalone (=no dependencies) and ROMable binary that can be written in Flash/EEPROM for your microcontroller. It can be done in assembler, C, C , ADA for the most common ones, and virtualy any language that don't need a (too) big runtime library.

  •  Tags:  
  • c
  • Related