I have a df like this:
df=pd.DataFrame({'A':[np.nan, np.nan, 'w', np.nan, 'y', np.nan],
'B': [np.nan, 'G', 'G', np.nan, 'R', 'R' ]})
# And I zipped the unique values of the two groups together
univalue=zip(df.A.dropna().unique().tolist(), df.B.dropna().unique().tolist())
I want to assign values to column A if values in B are not nan, column A has the coordinate value in the zip list. So that the df will be like below. Is there any way to do that?
> df
A B
nan nan
'w' 'G'
'w' 'G'
nan nan
'y' 'R'
'y' 'R'
CodePudding user response:
If I understand you correctly, you can create a mapping dictionary and then use .map
to assign to column "A":
univalue = dict(zip(df.B.dropna().unique(), df.A.dropna().unique()))
df["A"] = df["B"].map(univalue)
print(df)
Prints:
A B
0 NaN NaN
1 w G
2 w G
3 NaN NaN
4 y R
5 y R