Suppose I have the 2 arrays below:
a = tf.constant([1,2,3])
b = tf.constant([10,20,30])
How can we concatenate them using Tensorflow's methods, such that the new array is created by doing intervals of taking 1 number from each array one at a time? (Is there already a function that can do this?)
For example, the desired result for the 2 arrays is:
[1,10,2,20,3,30]
Methods with tf.concat
just puts array b after array a.
CodePudding user response:
a = tf.constant([1,2,3])
b = tf.constant([10,20,30])
c = tf.stack([a,b]) #combine a,b as a matrix
d = tf.transpose(c) #transpose matrix to get the right order
e = tf.reshape(d, [-1]) #reshape to 1-d tensor
CodePudding user response:
You could also try using tf.tensor_scatter_nd_update
:
import tensorflow as tf
a = tf.constant([1,2,3])
b = tf.constant([10,20,30])
shape = tf.shape(a)[0] tf.shape(b)[0]
c = tf.tensor_scatter_nd_update(tf.zeros(shape, dtype=tf.int32),
tf.expand_dims(tf.concat([tf.range(start=0, limit=shape, delta=2), tf.range(start=1, limit=shape, delta=2) ], axis=0), axis=-1),
tf.concat([a, b], axis=0))
# tf.Tensor([ 1 10 2 20 3 30], shape=(6,), dtype=int32)