Ok so say we have two different columns of data. One is just a running date column:
day
2017-11-08
2017-11-09
2017-11-10
2017-11-13
2017-11-14
2017-11-15
The other is just an ID column
ID
asdflauih3298b43f9n
akjwn3ibfun9834n93n
nv43879n4vliuhs87ba
I would like to join these columns in a way so that each ID occurs for every day. Like this:
day ID
2017-11-08 asdflauih3298b43f9n
2017-11-08 akjwn3ibfun9834n93n
2017-11-08 nv43879n4vliuhs87ba
2017-11-09 asdflauih3298b43f9n
2017-11-09 akjwn3ibfun9834n93n
2017-11-09 nv43879n4vliuhs87ba
2017-11-10 asdflauih3298b43f9n
2017-11-10 akjwn3ibfun9834n93n
2017-11-10 nv43879n4vliuhs87ba
Looking to do this in tidyverse. I know this should be really easy, but I'm stumped. Thanks!
CodePudding user response:
You can use the regular joining functions from dplyr
to perform a cross-join like this by setting the by
argument to character()
:
library(dplyr)
left_join(A, B, by = character())
#> # A tibble: 18 × 2
#> day ID
#> <chr> <chr>
#> 1 2017-11-08 asdflauih3298b43f9n
#> 2 2017-11-08 akjwn3ibfun9834n93n
#> 3 2017-11-08 nv43879n4vliuhs87ba
#> 4 2017-11-09 asdflauih3298b43f9n
#> 5 2017-11-09 akjwn3ibfun9834n93n
#> 6 2017-11-09 nv43879n4vliuhs87ba
#> 7 2017-11-10 asdflauih3298b43f9n
#> 8 2017-11-10 akjwn3ibfun9834n93n
#> 9 2017-11-10 nv43879n4vliuhs87ba
#> 10 2017-11-13 asdflauih3298b43f9n
#> 11 2017-11-13 akjwn3ibfun9834n93n
#> 12 2017-11-13 nv43879n4vliuhs87ba
#> 13 2017-11-14 asdflauih3298b43f9n
#> 14 2017-11-14 akjwn3ibfun9834n93n
#> 15 2017-11-14 nv43879n4vliuhs87ba
#> 16 2017-11-15 asdflauih3298b43f9n
#> 17 2017-11-15 akjwn3ibfun9834n93n
#> 18 2017-11-15 nv43879n4vliuhs87ba
Created on 2022-05-24 by the reprex package (v2.0.1)
Data
A <- tibble::tribble(
~day,
"2017-11-08",
"2017-11-09",
"2017-11-10",
"2017-11-13",
"2017-11-14",
"2017-11-15"
)
B <- tibble::tribble(
~ID,
"asdflauih3298b43f9n",
"akjwn3ibfun9834n93n",
"nv43879n4vliuhs87ba"
)
CodePudding user response:
It may be a case for crossing
tidyr::crossing(df1, df2)
-output
# A tibble: 18 × 2
day ID
<chr> <chr>
1 2017-11-08 akjwn3ibfun9834n93n
2 2017-11-08 asdflauih3298b43f9n
3 2017-11-08 nv43879n4vliuhs87ba
4 2017-11-09 akjwn3ibfun9834n93n
5 2017-11-09 asdflauih3298b43f9n
6 2017-11-09 nv43879n4vliuhs87ba
7 2017-11-10 akjwn3ibfun9834n93n
8 2017-11-10 asdflauih3298b43f9n
9 2017-11-10 nv43879n4vliuhs87ba
10 2017-11-13 akjwn3ibfun9834n93n
11 2017-11-13 asdflauih3298b43f9n
12 2017-11-13 nv43879n4vliuhs87ba
13 2017-11-14 akjwn3ibfun9834n93n
14 2017-11-14 asdflauih3298b43f9n
15 2017-11-14 nv43879n4vliuhs87ba
16 2017-11-15 akjwn3ibfun9834n93n
17 2017-11-15 asdflauih3298b43f9n
18 2017-11-15 nv43879n4vliuhs87ba
data
df1 <- structure(list(day = c("2017-11-08", "2017-11-09", "2017-11-10",
"2017-11-13", "2017-11-14", "2017-11-15")),
class = "data.frame", row.names = c(NA,
-6L))
df2 <- structure(list(ID = c("asdflauih3298b43f9n", "akjwn3ibfun9834n93n",
"nv43879n4vliuhs87ba")), class = "data.frame",
row.names = c(NA,
-3L))