I have this dataframe with this datatypes
Date Time
0 2022-05-20 17:07:00
1 2022-05-20 09:14:00
2 2022-05-19 18:56:00
3 2022-05-19 13:53:00
4 2022-05-19 13:52:00
... ... ...
81 2022-04-22 09:53:00
82 2022-04-20 18:20:00
83 2022-04-20 12:53:00
84 2022-04-20 12:12:00
85 2022-04-20 09:50:00
86 rows × 2 columns
Date datetime64[ns]
Time object
dtype: object
I tried
df1 = df[['Date','Time']].groupby(['Date']).agg(['count'])
and got
Time
Date count
2022-04-20 4
2022-04-22 4
2022-04-25 3
2022-04-26 6
2022-04-27 4
2022-04-28 4
2022-04-29 4
2022-05-02 4
2022-05-03 4
2022-05-04 4
Time also disappear when I tried
df = df.groupby(['Date'])['Date'].count().reset_index(name='Counts')
0 2022-04-20 4
1 2022-04-22 4
2 2022-04-25 2
3 2022-04-26 6
4 2022-04-27 4
So the Time column just gone. How do I get a dataframe where Date will be index, Time in that date, counts number of occurrence of that date? My project is to find the difference in Time within a date if number of date is odd. For example, if there are 4 time entries on 5/19/2020, then I need to find differences between entry 1 and entry 2, then entry 3 and entry 4, sum the above to get final result. I don't know if there is more elegant way to do it other than dataframe.
CodePudding user response:
you can merge the count by dates to the original DF. Does that help?
df2=df.groupby(['Date'])['Date'].count().reset_index(name='count')
df3=df.merge(df2,
on='Date', how='left')
df3.set_index('Date', inplace=True)
df3
Time count
Date
2022-05-20 17:07:00 2
2022-05-20 09:14:00 2
2022-05-19 18:56:00 3
2022-05-19 13:53:00 3
2022-05-19 13:52:00 3
2022-04-22 09:53:00 1
2022-04-20 18:20:00 4
2022-04-20 12:53:00 4
2022-04-20 12:12:00 4
2022-04-20 09:50:00 4
To make date appear only once, here it is
df2=df.groupby(['Date'])['Date'].count().reset_index(name='count')
df3=df.merge(df2, on='Date', how='left')
df3=df3.reset_index()
df3['index'] = 'col' # it is added to make use of pd.pivot below, a workaround
df3.pivot(index=['Date','Time','count'], columns='index')
Date Time count
2022-04-20 09:50:00 4
12:12:00 4
12:53:00 4
18:20:00 4
2022-04-22 09:53:00 1
2022-05-19 13:52:00 3
13:53:00 3
18:56:00 3
2022-05-20 09:14:00 2
CodePudding user response:
You can use nunique
:
df['count'] = df.groupby('Date').transform('nunique')
print(df)
# Output
Date Time count
0 2022-05-20 0 days 17:07:00 2
1 2022-05-20 0 days 09:14:00 2
2 2022-05-19 0 days 18:56:00 3
3 2022-05-19 0 days 13:53:00 3
4 2022-05-19 0 days 13:52:00 3
81 2022-04-22 0 days 09:53:00 1
82 2022-04-20 0 days 18:20:00 4
83 2022-04-20 0 days 12:53:00 4
84 2022-04-20 0 days 12:12:00 4
85 2022-04-20 0 days 09:50:00 4