I have my data in two data tables as below (with many more columns than just shown here) -
DataTable 1 = data_sale
Site Id | Country | Product ID |
---|---|---|
1000375476 | Canada | UG10000-WISD |
1000375476 | Canada | UGD12895 |
1000706152 | Switzerland | UG10000-WISD |
1000706152 | Switzerland | UG80000-NTCD-G |
1000797366 | Italy | UG10000-WISD |
1000797366 | Italy | UG12210 |
DataTable 2 = data_licenses
Site Id | Country | Product ID |
---|---|---|
1000375476 | Canada | UG10000-WISD |
1000375476 | Canada | UGD12895 |
1000797366 | Italy | UG12785 |
1000797366 | Italy | UG12210 |
I want to calculate the set difference for unique Product ID for all the Site Id in data_sale, keeping all rows.
Here is what I've done so far -
- For both of the data tables, I've created a new column with all unique products in it.
data_sale <-
data_sale[, `unique_products` := paste0(unique(`Product ID`), collapse = ","),
keyby = c("Site Id")]
data_licenses <-
data_licenses[, .(`unique_products` = paste0(unique(`Product ID`), collapse = ",")),
keyby = c("Site Id")]
- Left Merged data_sale with data_licenses
merge(data_sale, data_licenses, by = 'Site Id', all.x = TRUE)
Now the merged datatable look like this -
Site Id | Country | Product ID | unique_products.data_sale | unique_products.data_licenses |
---|---|---|---|---|
1000375476 | Canada | UG10000-WISD | UG10000-WISD,UGD12895 | UG10000-WISD,UGD12895 |
1000375476 | Canada | UGD12895 | UG10000-WISD,UGD12895 | UG10000-WISD,UGD12895 |
1000706152 | Switzerland | UG10000-WISD | UG10000-WISD,UG80000-NTCD-G | NA |
1000706152 | Switzerland | UG80000-NTCD-G | UG10000-WISD,UG80000-NTCD-G | NA |
1000797366 | Italy | UG10000-WISD | UG10000-WISD,UG12210 | UG12785,UG12210 |
1000797366 | Italy | UG12210 | UG10000-WISD,UG12210 | UG12785,UG12210 |
The problem is with my final step where I want a new column showing difference between the products of data_sale and data_licenses, it should look like this -
Site Id | Country | Product ID | unique_products.data_sale | unique_products.data_licenses | difference |
---|---|---|---|---|---|
1000375476 | Canada | UG10000-WISD | UG10000-WISD,UGD12895 | UG10000-WISD,UGD12895 | NA |
1000375476 | Canada | UGD12895 | UG10000-WISD,UGD12895 | UG10000-WISD,UGD12895 | NA |
1000706152 | Switzerland | UG10000-WISD | UG10000-WISD,UG80000-NTCD-G | NA | UG10000-WISD,UG80000-NTCD-G |
1000706152 | Switzerland | UG80000-NTCD-G | UG10000-WISD,UG80000-NTCD-G | NA | UG10000-WISD,UG80000-NTCD-G |
1000797366 | Italy | UG10000-WISD | UG10000-WISD,UG12210 | UG12785,UG12210 | UG10000-WISD |
1000797366 | Italy | UG12210 | UG10000-WISD,UG12210 | UG12785,UG12210 | UG10000-WISD |
Any leads on how it can be achieved will be of great help. Thanks!
Below is the data using dput() for the merged datatable
structure(list(`Site Id` = c("1000375476", "1000375476", "1000706152",
"1000706152", "1000797366", "1000797366"), Country = c("Canada",
"Canada", "Switzerland", "Switzerland", "Italy", "Italy"), `Product ID` = c("UG10000-WISD",
"UGD12895", "UG10000-WISD", "UG80000-NTCD-G", "UG10000-WISD",
"UG12210"), unique_products.x = c("UG10000-WISD,UGD12895", "UG10000-WISD,UGD12895",
"UG10000-WISD,UG80000-NTCD-G", "UG10000-WISD,UG80000-NTCD-G",
"UG10000-WISD,UG12210", "UG10000-WISD,UG12210"), unique_products.y = c("UG10000-WISD,UGD12895",
"UG10000-WISD,UGD12895", NA, NA, "UG12785,UG12210", "UG12785,UG12210"
)), sorted = "Site Id", class = c("data.table", "data.frame"), row.names = c(NA,
-6L), .internal.selfref = <pointer: 0x556bb5c10a40>)
CodePudding user response:
Probably there is a way trying to combine some built-in functions, but an example with a simple custom function:
find_differences = function(x,y){
# x: column list of strings we want to compare to
# y: other column list
x = strsplit(x,',') # transform strings to lists
y = strsplit(y,',')
differences = list()
for(i in seq(1,length(x))){ # for every row (nested-list)
if(identical(x[[i]],y[[i]])){
row_diff = NA
}
else{
row_diff = paste(x[[i]][ ! x[[i]] %in% y[[i]] ],collapse=',')
}
differences = c(differences,row_diff)
}
return(differences)
}
With your example:
example = rename(example,
unique_products.data_sale = unique_products.x,
unique_products.data_licenses = unique_products.y)
example$difference = find_differences(example$unique_products.data_sale, example$unique_products.data_license)
> example
Site Id Country Product ID unique_products.data_sale unique_products.data_licenses difference
1: 1000375476 Canada UG10000-WISD UG10000-WISD,UGD12895 UG10000-WISD,UGD12895 NA
2: 1000375476 Canada UGD12895 UG10000-WISD,UGD12895 UG10000-WISD,UGD12895 NA
3: 1000706152 Switzerland UG10000-WISD UG10000-WISD,UG80000-NTCD-G <NA> UG10000-WISD,UG80000-NTCD-G
4: 1000706152 Switzerland UG80000-NTCD-G UG10000-WISD,UG80000-NTCD-G <NA> UG10000-WISD,UG80000-NTCD-G
5: 1000797366 Italy UG10000-WISD UG10000-WISD,UG12210 UG12785,UG12210 UG10000-WISD
6: 1000797366 Italy UG12210 UG10000-WISD,UG12210 UG12785,UG12210 UG10000-WISD
CodePudding user response:
This will get the products in data_sale
that are not in data_license
by Site Id
. Instead of concatenating the unique product IDs, it's easier to work with the unique columns as character vectors.
library(data.table)
data_licenses <- data.table(`Site Id` = c("1000375476", "1000375476", "1000797366", "1000797366"),
Country = c("Canada", "Canada", "Italy", "Italy"),
`Product ID` = c("UG10000-WISD", "UGD12895", "UG12785", "UG12210"))
data_sale <- data.table(`Site Id` = c("1000375476", "1000375476", "1000706152", "1000706152", "1000797366", "1000797366"),
Country = c("Canada", "Canada", "Switzerland", "Switzerland", "Italy", "Italy"),
`Product ID` = c("UG10000-WISD", "UGD12895", "UG10000-WISD", "UG80000-NTCD-G", "UG10000-WISD", "UG12210"))
data_unique <- data_sale[
, .(unique_products.data_sale = .(unique(`Product ID`))), c("Site Id", "Country")
][
data_licenses[, .(unique_products = .(unique(`Product ID`))), "Site Id"],
unique_products.data_licenses := i.unique_products,
on = "Site Id"
][
, difference := lapply(.I, function(i) setdiff(unique_products.data_sale[[i]], unique_products.data_licenses[[i]]))
]
print(data_unique)
#> Site Id Country unique_products.data_sale unique_products.data_licenses difference
#> 1: 1000375476 Canada UG10000-WISD,UGD12895 UG10000-WISD,UGD12895
#> 2: 1000706152 Switzerland UG10000-WISD,UG80000-NTCD-G UG10000-WISD,UG80000-NTCD-G
#> 3: 1000797366 Italy UG10000-WISD,UG12210 UG12785,UG12210 UG10000-WISD
CodePudding user response:
How about this quick approach to get the difference for each site; you can then merge the result back to any frame that has Site Id
:
data_licenses[, .(licen_p = .(.(`Product ID`))), by = `Site Id`] %>%
.[data_sale[, .(sale_p= .(.(`Product ID`))), by=`Site Id`],on=.(`Site Id`)] %>%
.[,.(difference = toString(unlist(setdiff(sale_p, licen_p)))), by=`Site Id`]
Output:
Site Id difference
1: 1000375476
2: 1000706152 UG10000-WISD, UG80000-NTCD-G
3: 1000797366 UG10000-WISD, UG12210