def build_model(hp):
model = keras.Sequential()
for i in range(hp.Int('input_shape', 2, 20)):
model.add(layers.Dense(units=hp.Int('units_' str(i),
min_value=32,
max_value=512,
step=32),
activation='relu'))
model.add(layers.Dense(2, activation='sigmoid'))
model.compile(
optimizer=keras.optimizers.Adam(
hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss='binary_crossentropy',
metrics=['accuracy'])
return model
tuner.search(X_train, y_train,
epochs=5,
validation_data=(X_test, y_test))
ValueError: in user code:
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1051, in train_function *
return step_function(self, iterator)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1040, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1030, in run_step **
outputs = model.train_step(data)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 890, in train_step
loss = self.compute_loss(x, y, y_pred, sample_weight)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 948, in compute_loss
return self.compiled_loss(
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/compile_utils.py", line 201, in __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/losses.py", line 139, in __call__
losses = call_fn(y_true, y_pred)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/losses.py", line 243, in call **
return ag_fn(y_true, y_pred, **self._fn_kwargs)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/losses.py", line 1930, in binary_crossentropy
backend.binary_crossentropy(y_true, y_pred, from_logits=from_logits),
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/backend.py", line 5283, in binary_crossentropy
return tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
ValueError: `logits` and `labels` must have the same shape, received ((None, 2) vs (None, 1)).
Please help me solve the above error. Which is : ValueError: logits
and labels
must have the same shape, received ((None, 2) vs (None, 1)). I am doing Binary Classification here.
CodePudding user response:
When using binary_crossentropy
you need to write the last Dense layer like below:
layers.Dense(1, activation='sigmoid')
Full code for finding the best parameter with keras-tuner
:
# !pip install keras-tuner -q
import numpy as np
import keras_tuner
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
(x_train, y_train), (x_test, y_test) = ((np.random.rand(1000,4), np.random.randint(0, 2, 1000)) ,
(np.random.rand(100,4), np.random.randint(0,2, 100)))
def build_model(hp):
model = keras.Sequential()
n_layers = 4
n_features = x_train.shape[1]
inputs = model.add(keras.Input(shape=(n_features,)))
for i in range(hp.Int("dense_layer", 1, n_layers)):
model.add(layers.Dense(units=hp.Int('units_' str(i),
min_value=32,
max_value=512,
step=32),
activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(
optimizer=keras.optimizers.Adam(
hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss='binary_crossentropy',
metrics=['accuracy'])
return model
hp = keras_tuner.HyperParameters()
model = build_model(hp)
model.summary()
tuner = keras_tuner.RandomSearch(
build_model,
max_trials=10,
overwrite=True,
objective="val_accuracy",
# Set a directory to store the intermediate results.
directory="/logs/hyp_tune/",
)
tensorboard_cb = tf.keras.callbacks.TensorBoard('/logs/hyp_tune/')
tuner.search(
x_train, y_train,
validation_data=(x_test, y_test),
epochs=5,
callbacks=[tensorboard_cb],
)
Output:
%load_ext tensorboard
%tensorboard --logdir /logs/hyp_tune/
CodePudding user response:
Binary Crossentropy loss expects the model to output a single floating-point value. Your model seems to be outputting 2. Change the last layer of your model to output a single value like so:
model.add(layers.Dense(1, activation='sigmoid'))