When I fit the model with:
model.fit(X, y, epochs=40, batch_size=32, validation_split=0.2, verbose=2)
it prints one log line for each epoch as:
Epoch 1/100
0s - loss: 0.2506 - acc: 0.5750 - val_loss: 0.2501 - val_acc: 0.3750
Epoch 2/100
0s - loss: 0.2487 - acc: 0.6250 - val_loss: 0.2498 - val_acc: 0.6250
Epoch 3/100
0s - loss: 0.2495 - acc: 0.5750 - val_loss: 0.2496 - val_acc: 0.6250
.....
How can I print the log line per very 10 epochs as follows?
Epoch 10/100
0s - loss: 0.2506 - acc: 0.5750 - val_loss: 0.2501 - val_acc: 0.3750
Epoch 20/100
0s - loss: 0.2487 - acc: 0.6250 - val_loss: 0.2498 - val_acc: 0.6250
Epoch 30/100
0s - loss: 0.2495 - acc: 0.5750 - val_loss: 0.2496 - val_acc: 0.6250
.....
CodePudding user response:
This callback will create and write on a log text file what you want:
log_path = "text_file_name.txt" # it will be created automatically
class print_training_on_text_every_10_epochs_Callback(Callback):
def __init__(self, logpath):
self.logpath = logpath
def on_epoch_end(self, epoch, logs=None):
with open(self.logpath, 'a') as writefile: # put log_path here
with redirect_stdout(writefile):
if(int(epoch) % 10) == 0:
print("Epoch: {:>3} | Loss: ".format(epoch) f"{logs['loss']:.4e}" " | Valid loss: " f"{logs['val_loss']:.4e}")
writefile.write("\n")
my_callbacks = [
print_training_on_text_every_10_epochs_Callback(logpath=log_path),
]
You want to call it like this.
model.fit(training_dataset, epochs=60, validation_data=validation_dataset, callbacks=my_callbacks)
The text file will be updated only after 10 epochs have passed
This is what i get on the text file
Epoch: 0 | Loss: 5.3454e 00 | Valid loss: 4.2420e-01
Epoch: 10 | Loss: 3.1342e-02 | Valid loss: 3.4554e-02
Epoch: 20 | Loss: 1.6330e-02 | Valid loss: 2.2512e-02
The first epoch is numbered 0, the second 1 and so on.