I am in the middle of an interview simulation and I got stock with one question. Can someone provide the answer for me please?
The question:
We use a secondary datastore (we use elasticsearch alongside our main database) for real time analytics and reporting. What problems might you anticipate with this sort of approach? Explain how would go about solving or mitigating them?
Thank you
CodePudding user response:
One problem might be synchronization issues, where the elastic search store gets out of sync and starts service stale data. To avoid issues, you will have to implement monitoring on your data pipeline, elastic search and the primary database, to detect any problem by checking for update times, delay, number of records (within some level of error) in each of them and overall system operation status (up / down).
Another is disconnection and recovery - what happens if your data pipeline or elastic search loses connection to the rest of the system? You will need an automatic way to re-connect, when network is restored and start synchronising data again.
You also have to take into account sudden influx of data - how to scale ElasticSearch ingestion or your data processor (data pipeline) if there is large amount of updates and inserts in peak hours or after re-connection when there was network issues.
CodePudding user response:
There are several problems:
- No transactional cover : If your main database is transactional (which it usually is), so you either commit or you don't. After the record is inserted into your main database, there is no guarentee that it will be committed to ES. In fact if you commit several records to your primary DB, you may have a situation where some of them are committed to ES, and few others are not. This is a MAJOR issue.
- Refresh Interval : Elasticsearch by default refreshes every second. That means "Real-time" is generally 1 second later, or at least when the data is queried for. If you commit a record into your primary db, and immediately query for it via ES, it may not get found. THe only way around this is to GET the record using its ID.
- Data-Duplication : Elasticsearch cannot do joins. You need to denormalize all data that is coming from a RDBMS. If one user has many posts, you cannot "join" to search. You have to add the user id an any other user specific details to every post object.
- Hardware : Elasticsearch needs RAM (bare minimum of 1 gb) to work properly. This is assuming you don't use anything else from the ELK stack. THis is an important cost wise consideration.