Data fits a mixed effects model with nested random effects. How do I get the r-square and F-ratio for this model?
set.seed(111)
df <- data.frame(level = rep(c("A","B"), times = 8),
time = rep(c("1","2","3","4"), each = 4),
x1 = rnorm(16,3,1),
x2 = rnorm(16,3,1))
mod <- lmer(x1 ~ x2 I(x2^2) (1|time/level), df)
summary(mod)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] Formula: x1 ~ x2 I(x2^2) (1 | time/level) Data: df
REML criterion at convergence: 47.9
Scaled residuals:
Min 1Q Median 3Q Max
-1.72702 -0.41979 0.00653 0.43709 2.36393
Random effects: Groups Name Variance Std.Dev. level:time (Intercept) 0.00 0.00 time (Intercept) 0.00 0.00 Residual 1.02 1.01 Number of obs: 16, groups: level:time, 8; time, 4
Fixed effects:
Estimate Std. Error df t value Pr(>|t|) (Intercept) 3.58299 0.81911 13.00000 4.374 0.000753 *** x2
-0.59777 0.54562 13.00000 -1.096 0.293147 I(x2^2) 0.07686 0.09356 13.00000 0.822 0.426136
--- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) x2 x2 -0.868 I(x2^2) 0.660 -0.928 optimizer (nloptwrap) convergence code: 0 (OK) boundary (singular) fit: see ?isSingular
CodePudding user response:
For the R-squared you can use the r.squaredLR
function from the MuMIn
package:
library(MuMIn)
r.squaredLR(mod)
Output:
[1] 0.1017782
attr(,"adj.r.squared")
[1] 0.1086741
For the F-ratio, maybe you want this:
anova(mod)
Output:
Analysis of Variance Table
npar Sum Sq Mean Sq F value
x2 1 0.81407 0.81407 0.7981
I(x2^2) 1 0.68850 0.68850 0.6750