My logic is like this:
cond2
column is true before expected
column, and cond1
column is true before cond2
column, then expected
column can be true
input
import pandas as pd
import numpy as np
d={'cond1':[False,False,True,False,False,False,False,True,False,False],'cond2':[False,True,False,True,True,False,False,False,True,False]}
df = pd.DataFrame(d)
expected result table
cond1 cond2 expected
0 FALSE FALSE
1 FALSE TRUE
2 TRUE FALSE
3 FALSE TRUE
4 FALSE TRUE
5 FALSE FALSE TRUE
6 FALSE FALSE TRUE
7 TRUE FALSE
8 FALSE TRUE
9 FALSE FALSE TRUE
CodePudding user response:
The description is not fully clear. It looks like you need a cummax
per group starting with True in cond1:
m = df.groupby(df['cond1'].cumsum())['cond2'].cummax()
df['expected'] = df['cond2'].ne(m)
Output:
cond1 cond2 expected
0 False False False
1 False True False
2 True False False
3 False True False
4 False True False
5 False False True
6 False False True
7 True False False
8 False True False
9 False False True
CodePudding user response:
It's not very clear what you're looking for~
df['expected'] = ((df.index > df.idxmax().max())
& ~df.any(axis=1))
# Output:
cond1 cond2 expected
0 False False False
1 False True False
2 True False False
3 False True False
4 False True False
5 False False True
6 False False True
7 True False False
8 False True False
9 False False True