To replace the NaN values in the world column:
df['world'] = df['world'].replace(np.nan, 'some country')
To replace the NaN values in the whole dataframe:
df = df.replace(np.nan, 'some value')
To replace inplace i.e., no need to reassign:
df.replace(np.nan, 'some value', inplace=True)
To append some other values in dataframe:
df2 = pd.DataFrame([[True, 'bob', 'canada', 'hi'], [False, 'marley', 'jamaica', np.nan]],
columns=['status', 'user', 'world', 'cat'])
df = df.append(df2)
After all these operations, the dataframe may look like this: