Training accuracy plot
I’m trying to classifiy ECG signals using LSTM and MATLAB, the above plot shows that the training accuracy of the system is 100% but when I apply this code to calculate and get the accuracy I get only 20%
LSTMAccuracy = sum(trainPred == Labels)/numel(Labels)*100
Training accuracy calculated
Am I missing something here? Or there something wrong I did in my code?
Here is the configuration and the training code:
layers = [ ...
sequenceInputLayer(1)
bilstmLayer(100,'OutputMode','last')
fullyConnectedLayer(5)
softmaxLayer
classificationLayer
]
options = trainingOptions('adam', ...
'MaxEpochs',1750, ...
'MiniBatchSize', 150, ...
'InitialLearnRate', 0.0001, ...
'ExecutionEnvironment',"auto",...
'plots','training-progress', ...
'Verbose',false);
net = trainNetwork(Signals, Labels, layers, options);
trainPred = classify(net, Signals,'SequenceLength',1000);
LSTMAccuracy = sum(trainPred == Labels)/numel(Labels)*100
figure
confusionchart(Labels,trainPred,'ColumnSummary','column-normalized',...
'RowSummary','row-normalized','Title','Confusion Chart for LSTM');
CodePudding user response:
The problem can be solved using the following line of code:
trainPred = classify(net, Signals,'SequenceLength','longest');