I want to expand dimension in my model. Can I replace tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=1)), with a tf.keras.layers.Reshape() layer
My model is
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(10, activation='relu', input_shape=(i1,i2))),
tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=1)),
tf.keras.layers.Dense(1)
I want to replace the lambda layer
Modified Code:
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(10, activation='relu'),input_shape=(i1,i2)),
tf.keras.layers.Reshape((1,)),
tf.keras.layers.Dense(1)
Error :
ValueError: Exception encountered when calling layer "reshape" (type Reshape).
total size of new array must be unchanged, input_shape = [20], output_shape = [1]
Call arguments received:
• inputs=tf.Tensor(shape=(None, 20), dtype=float32)
CodePudding user response:
Maybe something like this (you do not have to take care of the batch dimension):
import tensorflow as tf
inputs = tf.keras.layers.Input((2, ))
x = tf.keras.layers.Dense(10, activation='relu')(inputs)
outputs = tf.keras.layers.Reshape((1,) x.shape[1:])(x)
model = tf.keras.Model(inputs, outputs)
model.summary()
With your code:
import tensorflow as tf
inputs = tf.keras.layers.Input((5, 10))
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(10, activation='relu'))(inputs)
x = tf.keras.layers.Reshape((1,) x.shape[1:])(x)
outputs = tf.keras.layers.Dense(5)(x)
model = tf.keras.Model(inputs, outputs)
model.summary()
Generally, if you check the docs, the output shape of the last layer will be inferred if you use -1
:
# also supports shape inference using `-1` as dimension
model.add(tf.keras.layers.Reshape((-1, 2, 2)))
# where 2 and 2 are the new dimensions and -1 is referring to the output shape of the last layer.
This essentially works, because the Reshape
layer is internally calling tf.TensorShape
:
input_shape = tf.TensorShape(input_shape).as_list()
I personally prefer calling the shape explicitly though.
CodePudding user response:
We can use tf.keras.layers.Reshape((1, -1))
like below, instead of using tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=1))
.
import tensorflow as tf
model = tf.keras.Sequential([
tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(10, activation='relu', input_shape=[100, 256])),
tf.keras.layers.Reshape((1, -1)),
tf.keras.layers.Dense(10)
])
model(tf.random.uniform((1, 100, 256))) # (batch_dim, input.shape[0], input.shape[1])
model.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bidirectional_1 (Bidirectio (1, 20) 21360
nal)
reshape_1 (Reshape) (1, 1, 20) 0
dense_1 (Dense) (1, 1, 10) 210
=================================================================
Total params: 21,570
Trainable params: 21,570
Non-trainable params: 0
_________________________________________________________________
Check your code and we get the same result:
import tensorflow as tf
model = tf.keras.Sequential([
tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(10, activation='relu', input_shape=[100, 256])),
tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=1)),
tf.keras.layers.Dense(10)
])
model(tf.random.uniform((1, 100, 256))) # (batch_dim, input.shape[0], input.shape[1])
model.summary()
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bidirectional_2 (Bidirectio (1, 20) 21360
nal)
lambda (Lambda) (1, 1, 20) 0
dense_2 (Dense) (1, 1, 10) 210
=================================================================
Total params: 21,570
Trainable params: 21,570
Non-trainable params: 0
_________________________________________________________________