When I was searching internet for an algorithm to correct luminance I came across this
grain_background.png:
Complete example:
import cv2
import numpy as np
from numpy.ma import divide, mean
f = cv2.imread("grain.png")
b = cv2.imread("grain_background.png")
f = f.astype(np.float32)
b = b.astype(np.float32)
C = mean(f) / divide(f, b).mean()
g = divide(f, b) * C
g = g.astype(np.uint8)
cv2.imwrite("grain_out.png", g)
Your need to use masked divide operation because ordinary operation could lead to division by zero => nan values.
Resulting image (output.png):