Home > Software design >  Retrieve from dict based on list values
Retrieve from dict based on list values

Time:10-07

Here is my data -

inp = [{'father_husband_mother_name': [['Father s Name', 0.8603670001029968],
   ['Shripati', 0.8603670001029968],
   ['Father s Name', 0.8903670001029969],
   ['Shpppati', 0.8903670001029969]],
  'doc_id': [['GGX2176', 0.8435981869697571],
   ['GGC2176', 0.8835981869697571]],
  'name': [['Elector s Name', 0.8301510810852051],
   ['Shibshankar Ghosh', 0.8301510810852051],
   ['Elector s Name', 0.8501510810852051],
   ['Shibshankar Ghosh', 0.8501510810852051]],
  'date_of_birth': [['Age as on 1.1.2000', 0.8067844915390014],
   ['15', 0.8067844915390014],
   ['Age as on 1.1.2000', 0.8267844915390015],
   ['15', 0.8267844915390015]],
  'gender_sex': [['Sex', 0.7784658074378967],
   ['M', 0.7784658074378967],
   ['Sex', 0.8784658074378967],
   ['M', 0.8784658074378967]]}]

STOPWORDS = ['Sex', 'Father s Name', 'Elector s Name', 'Address', 'Name', 'Gender', 'Mother s Name', 
             'Husband s Name']

The output that I expect:

{'father_husband_mother_name': 'Shpppati',
 'doc_id': 'GGC2176',
 'name': 'Shibshankar Ghosh',
 'date_of_birth': 'Age as on 1.1.2000,15',
 'gender_sex': 'M'}

Here is the logic -

Retrieve the value that has the highest confidence score [the float inside the list of lists] that is not present in STOPWORDS for each key.

What I have tried -

def process_kie_dict(voter_raw_labels, threshold=0.7):
    cleaned_dict = {}
    intermediate_dict = {}
    for entity_dict in voter_raw_labels:
        for entity, val in entity_dict.items():
            conf_val = [item[1] for item in val]
            unique_val = list(set(conf_val))
            max_conf = max(unique_val)
            if max_conf > threshold:
                if len(unique_val)==1:
                    add_val = [item[0] for item in val]
                else:
                    max_conf_index = conf_val.index(max_conf)
                    add_val = [item[0] for item in val[max_conf_index:]]

                if entity not in intermediate_dict.keys():
                    intermediate_dict[entity] = [add_val,max_conf]
                else:
                    if intermediate_dict[entity][1] < max_conf:
                        intermediate_dict[entity] = [add_val,max_conf]
    
#     print(intermediate_dict)
    for key, val in intermediate_dict.items():
        final_value = ''
        for value in val[0]:
            m = len(str.strip(value))
            edit_dist_list = []
            for word in STOPWORDS:
                n = len(word)
                edit_dist = editDistDP(value, word, m, n)
                edit_dist_list.append(edit_dist)

            if min(edit_dist_list) < 2:
                value=''
            
            final_value = final_value   value   ','
            clean_value = final_value.strip(",")
        
        cleaned_dict[key]=clean_value
    return cleaned_dict

def editDistDP(str1, str2, m, n):
    # Create a table to store results of subproblems
    dp = [[0 for x in range(n   1)] for x in range(m   1)]
 
    # Fill d[][] in bottom up manner
    for i in range(m   1):
        for j in range(n   1):
 
            # If first string is empty, only option is to
            # insert all characters of second string
            if i == 0:
                dp[i][j] = j    # Min. operations = j
 
            # If second string is empty, only option is to
            # remove all characters of second string
            elif j == 0:
                dp[i][j] = i    # Min. operations = i
 
            # If last characters are same, ignore last char
            # and recur for remaining string
            elif str1[i-1] == str2[j-1]:
                dp[i][j] = dp[i-1][j-1]
 
            # If last character are different, consider all
            # possibilities and find minimum
            else:
                dp[i][j] = 1   min(dp[i][j-1],        # Insert
                                   dp[i-1][j],        # Remove
                                   dp[i-1][j-1])    # Replace
 
    return dp[m][n]

You can forget about the edit distance implementation, not important. What I want to know is given nested for loops, this won't work at scale. Looking for a more efficient implementation.

CodePudding user response:

Here is a parser for your data

result = {k: sorted(v, key=lambda x: x[1] if x[0] not in STOPWORDS else 0)[-1][0] for k, v in inp[0].items()}

In short, it takes a key and sorts the rest of the dictionary based on the confidence value, unless the first element of the list is included in STOPWORDS. Then adds the first element of that sorted list to the result dictionary as a value.

  • Related