Home > Software design >  How to do joins and update together in a same query in PySpark?
How to do joins and update together in a same query in PySpark?

Time:10-21

I have a SQL query which I am trying to convert into PySpark. In SQL query, we are joining two tables and updating a column where condition is matching. The SQL query looks like this:

UPDATE [STUDENT_TABLE] INNER JOIN [COLLEGE_DATA]
ON ([STUDENT_TABLE].UNIQUEID = COLLEGE_DATA.PROFESSIONALID) 
AND ([STUDENT_TABLE].[ADDRESS] = COLLEGE_DATA.STATE_ADDRESS) 
SET STUDENT_TABLE.STUDENTINSTATE = "REGULAR"
WHERE (((STUDENT_TABLE.BLOCKERS) Is Null));

CodePudding user response:

Example inputs:

from pyspark.sql import functions as F
df_stud = spark.createDataFrame(
    [(1, 'x', None, 'REG'),
     (2, 'y', 'qwe', 'REG')],
    ['UNIQUEID', 'ADDRESS', 'BLOCKERS', 'STUDENTINSTATE'])

df_college = spark.createDataFrame([(1, 'x'), (2, 'x')], ['PROFESSIONALID', 'STATE_ADDRESS'])

Your query would update just the first row of df_stud - the value in the column "STUDENTINSTATE" would become "REGULAR".

In the following script, we do the join, then select all the columns from df_stud, except the column "STUDENTINSTATE" which must be updated. This column gets value "REGULAR" if the column "PROFESSIONALID" (from df_college) is not null (i.e. join condition was satisfied). If the join condition is not satisfied, the value should not be updated, so it is taken from column "STUDENTINSTATE" as is.

join_on = (df_stud.UNIQUEID == df_college.PROFESSIONALID) & \
          (df_stud.ADDRESS == df_college.STATE_ADDRESS) & \
          df_stud.BLOCKERS.isNull()
df = (df_stud.alias('a')
    .join(df_college.alias('b'), join_on, 'left')
    .select(
        *[c for c in df_stud.columns if c != 'STUDENTINSTATE'],
        F.expr("nvl2(b.PROFESSIONALID, 'REGULAR', a.STUDENTINSTATE) STUDENTINSTATE")
    )
)

df.show()
#  -------- ------- -------- -------------- 
# |UNIQUEID|ADDRESS|BLOCKERS|STUDENTINSTATE|
#  -------- ------- -------- -------------- 
# |       1|      x|    null|       REGULAR|
# |       2|      y|     qwe|           REG|
#  -------- ------- -------- -------------- 
  • Related