I have this pipeline :
let pipeline = [
{
$match: {
date: { $gte: new Date("2022-10-19"), $lte: new Date("2022-10-26") },
},
},
{
$group: {
_id: "$date",
tasks: { $push: "$$ROOT" },
},
},
{
$sort: { _id: -1 },
},
];
const aggregationData = await ScheduleTaskModel.aggregate(pipeline);
where i group all "tasks" between a date range by date and i get that result :
[
{
"date": "2022-10-21T00:00:00.000Z",
"tasks": [...tasks with this date]
},
{
"date": "2022-10-20T00:00:00.000Z",
"tasks": [...tasks with this date]
}
]
as you see i have "tasks" only for 2 dates in that range,what if i want all dates to appear even the ones with no tasks so it would be like this with empty arrays ?
[
{
"date": "2022-10-26T00:00:00.000Z",
"tasks": []
},
{
"date": "2022-10-25T00:00:00.000Z",
"tasks": []
},
{
"date": "2022-10-24T00:00:00.000Z",
"tasks": []
},
{
"date": "2022-10-23T00:00:00.000Z",
"tasks": []
},
{
"date": "2022-10-22T00:00:00.000Z",
"tasks": []
},
{
"date": "2022-10-21T00:00:00.000Z",
"tasks": [...tasks with this date]
},
{
"date": "2022-10-20T00:00:00.000Z",
"tasks": [...tasks with this date]
},
{
"date": "2022-10-19T00:00:00.000Z",
"tasks": []
},
]
i tried to use $densify but unfortunately it requires upgrading my mongoDb atlas cluster which is not possible..
CodePudding user response:
The answer of @WernfriedDomscheitAnother has a downside of grouping together all the documents in the collection, creating one large document, while a document has a size limit. A variation on it, without this downside, can be:
$match
only the relevant document, same as in your current query- Use
$facet
to handle the case of no relevant documents at all. This will allow you to group all the relevant documents as you did in your query, but to keep a working-document even if there are any. - Add the relevant dates inside an array (since we use
$facet
this will happen even if the first match is empty) - Concatenate the array of matched data with the array of empty entries, use the real-data first.
$unwind
the separate the documents by date, and$group
again by date to remove the duplicates.- Format the result
db.collection.aggregate([
{$match: {date: {$gte: new Date("2022-10-19"), $lte: new Date("2022-10-26")}}},
{$facet: {
data: [
{$group: {_id: "$date", tasks: {$push: "$$ROOT"}}},
{$project: {date: "$_id", tasks: 1}}
]
}},
{$addFields: {
dates: {$map: {
input: {$range: [0, 8]},
// maybe more dynamic with $dateDiff -> { $dateDiff: { startDate: new Date("2022-10-19"), endDate: new Date("2022-10-26") }, unit: "day" } }
in: {
date: {$dateAdd: {
startDate: ISODate("2022-10-19T00:00:00.000Z"),
unit: "day",
amount: "$$this"
}},
tasks: []
}
}}
}},
{$project: {data: {$concatArrays: ["$data", "$dates"]}}},
{$unwind: "$data"},
{$group: {_id: "$data.date", "tasks": {$first: "$data.tasks"}}},
{$project: { _id: 0, date: "$_id", tasks: 1 }},
{$sort: { date: -1 }},
])
See how it works on the playground example
CodePudding user response:
New function $densify
would be the simplest, of course. The manual way of doing it would be this one:
db.collection.aggregate([
{
$group: {
_id: null,
data: { $push: "$$ROOT" }
}
},
{
$set: {
dates: {
$map: {
input: { $range: [ 0, 8 ] }, // maybe more dynamic with $dateDiff -> { $dateDiff: { startDate: new Date("2022-10-19"), endDate: new Date("2022-10-26") }, unit: "day" } }
in: {
date: {
$dateAdd: {
startDate: ISODate("2022-10-19T00:00:00.000Z"),
unit: "day",
amount: "$$this"
}
}
}
}
}
}
},
{
$set: {
dates: {
$map: {
input: "$dates",
as: "d",
in: {
$mergeObjects: [
"$$d",
{
tasks: {
$filter: {
input: "$data",
cond: { $eq: [ "$$d.date", "$$this.date" ] }
}
}
}
]
}
}
}
}
},
{
$project: {
data: {
$map: {
input: "$dates",
in: {
$cond: {
if: { $eq: [ "$$this.tasks", [] ] },
then: "$$this",
else: { $first: "$$this.tasks" }
}
}
}
}
}
},
{ $unwind: "$data" },
{ $replaceWith: "$data" }
])