I have an information criterion with help of Gini. How can I change my code for Mean Squared Error instead of Gini? Python, the random forest task.
def gini(labels):
# to count the number of objects for different classes
classes = {}
for label in labels:
if label not in classes:
classes[label] = 0
classes[label] = 1
# to calculate Gini criterion
impurity = 1
for label in classes:
p = classes[label] / len(labels)
impurity -= p ** 2
return impurity
CodePudding user response:
Here is how you could modify the GINI function to calculate the MSE :
def mse(labels):
# Calculate the predicted value for each class
classes = {}
for label in labels:
if label not in classes:
classes[label] = []
classes[label].append(label)
predicted_values = {}
for label in classes:
predicted_values[label] = sum(classes[label]) / len(classes[label])
# Calculate the MSE
squared_errors = []
for label in labels:
squared_error = (label - predicted_values[label]) ** 2
squared_errors.append(squared_error)
if len(squared_errors) > 0:
mse = sum(squared_errors) / len(squared_errors)
else:
mse = 0
return mse