Home > Software design >  Having problems making a max-min priority queue(python)
Having problems making a max-min priority queue(python)

Time:12-20

I made a min-max priority queue in python. I tested it using my example and had no problems, but the coding website(a site like leetcode) said that the output was wrong(Not an error)... Is there any problems / improvements I can make?

I think there is a import that I can make to make this part easier(I think), but I'm trying to get the concept right before importing it in the future.

class MaxMinHeap:
    def __init__(self, max_len):
        self.heap_arr = [0 for _ in range(max_len   1)]
        self.arr_len = 0

    # checks if heap is empty
    def empty(self):
        if self.arr_len == 0:
            return True
        return False

    # checks if the level of the tree is an odd number or an even number
    def is_min_level(self):
        if math.floor(math.log2(self.arr_len)) % 2 == 1:
            return False
        return True

    # inserts a number to the heap
    def insert_num(self, input_num):
        self.arr_len  = 1
        self.heap_arr[self.arr_len] = input_num
        # if the array was empty, don't do any checks
        if self.arr_len == 1:
            return
        # else if the array is at the min level of the tree
        elif self.is_min_level():
            self.min_insert()
        else:
            self.max_insert()

    # when a number is added to the heap at the max level
    def max_insert(self):
        # if the child is bigger than the number
        if self.heap_arr[self.arr_len // 2] > self.heap_arr[self.arr_len]:
            # change the values
            self.heap_arr[self.arr_len], self.heap_arr[self.arr_len // 2] = self.heap_arr[self.arr_len // 2], self.heap_arr[self.arr_len]
            # keep updating the values up the min tree
            self.minify_up(self.arr_len // 2)
        else:
            # keep updating the values up the max tree
            self.maxity_up(self.arr_len)

    # when a number is added to the heap at the min level
    def min_insert(self):
        # if the child is smaller than the number
        if self.heap_arr[self.arr_len // 2] < self.heap_arr[self.arr_len]:
            # change the values
            self.heap_arr[self.arr_len], self.heap_arr[self.arr_len // 2] = self.heap_arr[self.arr_len // 2], self.heap_arr[self.arr_len]
            # keep updating the values up the max tree
            self.maxity_up(self.arr_len // 2)
        else:
            # keep updating the values up the min tree
            self.minify_up(self.arr_len)

    # when a max number is needed
    def max_output(self):
        if self.empty():
            return -1
        # if there is only one number(the first node is in the min level) return that node
        if self.arr_len == 1:
            self.arr_len -= 1
            return self.heap_arr[1]
        # else check the second and third node to get max num
        temp_index = 2
        if temp_index   1 <= self.arr_len and self.heap_arr[temp_index] < self.heap_arr[temp_index   1]:
            temp_index  = 1
        # change with the last element
        self.heap_arr[self.arr_len], self.heap_arr[temp_index] = self.heap_arr[temp_index], self.heap_arr[self.arr_len]
        self.arr_len -= 1
        # go updating down the array
        self.maxify_down(temp_index)
        # print the max that was changed with the last element
        return self.heap_arr[self.arr_len   1]

    # when a min number is needed
    def min_output(self):
        if self.empty():
            return -1
        # change with the last element(the min number is always at index 1)
        self.heap_arr[self.arr_len], self.heap_arr[1] = self.heap_arr[1], self.heap_arr[self.arr_len]
        self.arr_len -= 1
        # go updating down the array
        self.minify_down(1)
        # print the min that was changed with the last element
        return self.heap_arr[self.arr_len   1]

    # when an output is sent from the max level
    def maxify_down(self, input_index):
        # while the node has a child
        while input_index * 2 <= self.arr_len:
            # if there are no grandchild
            if input_index * 4 > self.arr_len:
                # check the child
                comp_index = input_index * 2
                if comp_index   1 == self.arr_len and self.heap_arr[comp_index] < self.heap_arr[comp_index]:
                    comp_index  = 1
                # if any of the child are bigger change values
                if self.heap_arr[input_index] < self.heap_arr[comp_index]:
                    self.heap_arr[input_index], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[input_index]
                # end update
                return
            # else set the comparing element to its right child
            # this is because the right child might have no child. Making this node have no guarantee that it is
            # smaller than the grandchild
            comp_index = input_index * 2   1
            # loop through the grandchild list
            for temp_index in range(input_index * 4, input_index * 4   4):
                if temp_index   1 == self.arr_len and self.heap_arr[comp_index] < self.heap_arr[temp_index]:
                    comp_index = temp_index
            # swap the max number with the index
            self.heap_arr[input_index], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[input_index]
            # if the swaped index was the child one end update
            if comp_index == input_index * 2   1:
                return
            # else check the parent of the node for any errors
            if self.heap_arr[comp_index] < self.heap_arr[comp_index // 2]:
                self.heap_arr[comp_index // 2], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[comp_index // 2]
            # set the index again and loop
            input_index = comp_index

    # when an output is sent from the max level
    def minify_down(self, input_index):
        # while the node has a child
        while input_index * 2 <= self.arr_len:
            # if there are no grandchild
            if input_index * 4 > self.arr_len:
                # check the child
                comp_index = input_index * 2
                if comp_index   1 == self.arr_len and self.heap_arr[comp_index] > self.heap_arr[comp_index]:
                    comp_index  = 1
                # if any of the parents are bigger change values
                if self.heap_arr[input_index] > self.heap_arr[comp_index]:
                    self.heap_arr[input_index], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[input_index]
                # end update
                return
            # else set the comparing element to its right child
            # this is because the right child might have no child. Making this node have no guarantee that it is
            # bigger than the grandchild
            comp_index = input_index * 2   1
            # loop through the grandchild list
            for temp_index in range(input_index * 4, input_index * 4   4):
                if temp_index   1 == self.arr_len and self.heap_arr[comp_index] > self.heap_arr[temp_index]:
                    comp_index = temp_index
            # swap the min number with the index
            self.heap_arr[input_index], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[input_index]
            # if the swaped index was the child one end update
            if comp_index == input_index * 2   1:
                return
            # else check the parent of the node for any errors
            if self.heap_arr[comp_index] > self.heap_arr[comp_index // 2]:
                self.heap_arr[comp_index // 2], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[comp_index // 2]
            # set the index again and loop
            input_index = comp_index

    # when input is in max level
    def maxity_up(self, input_index):
        # while the input has a grandfather
        while input_index // 4 > 0:
            # compare grandfather with input and if input is greater swap
            comp_index = input_index // 4
            if self.heap_arr[comp_index] >= self.heap_arr[input_index]:
                break
            self.heap_arr[comp_index], self.heap_arr[input_index] = self.heap_arr[input_index], self.heap_arr[comp_index]
            # update index and loop
            input_index = comp_index

    # when input is in min level
    def minify_up(self, input_index):
        # while the input has a grandfather
        while input_index // 4 > 0:
            # compare grandfather with input and if input is smaller swap
            comp_index = input_index // 4
            if self.heap_arr[comp_index] <= self.heap_arr[input_index]:
                break
            self.heap_arr[comp_index], self.heap_arr[input_index] = self.heap_arr[input_index], self.heap_arr[comp_index]
            # update index and loop
            input_index = comp_index

The array used to store is heap_arr and the heap starts at index 1 to make the child and parent //2 and *2 each.

I tried to look into a research paper and tried to copy its psudocode to python, but got the same results. Working for my example but not for the site.

CodePudding user response:

Your minify_down (and maxity_down) methods have bugs. In fact, you could have found this quite easily as things already went wrong with just four values.

I'll first show a few steps you could have taken to debug this yourself:

  1. Define a method that prints the heap in a human-readable "tree-view". Nothing complicated; just a 90° (counter-clockwise) rotated view where the root appears at the left and the tree extends to the right:

    def print(self, i=1, tab=""):
        if i > self.arr_len:
            return
        self.print(i*2   1, tab "  ")
        print(tab, self.heap_arr[i])
        self.print(i*2, tab "  ")
    
  2. Define a method that verifies the consistency of the heap, and if it is not, print the heap and throw an error:

    def verify(self, i=1, ismin=True, low=-100000, high=100000):
        if i > self.arr_len:
            return
        val = self.heap_arr[i]
        if not(low <= val <= high):
            self.print()
            raise ValueError(f"inconsistent heap at {val}")
        if ismin:
            low = val
        else:
            high = val
        self.verify(i*2, not ismin, low, high)
        self.verify(i*2 1, not ismin, low, high)
    
  3. Create some random input and feed those values to the heap, and after every call of insert also call the above verify method.

    import random
    
    orig = list(range(20))
    for i in range(100):  # repeat a few times with different shuffles of input
        values = orig[:]
        random.shuffle(values)
        heap  = MaxMinHeap(len(values) 3)  # Allocate enough space for the heap
        for value in values:  # Insert the values in their shuffled order
            heap.insert_num(value)
            heap.verify()  # ... and each time verify all is well
    
  4. If the above test turns out well (it does), continue with adding min_output calls in the test

    import random
    
    orig = list(range(20))
    for i in range(100):  # repeat a few times with different shuffles of input
        values = orig[:]
        random.shuffle(values)
        heap  = MaxMinHeap(len(values) 3)  # Allocate enough space for the heap
        for value in values:  # Insert the values in their shuffled order
            heap.insert_num(value)
            heap.verify()  # ... and each time verify all is well
    
        res = []  # output of values as they are removed from the heap
        while not heap.empty():
            res.append(heap.min_output())
            heap.verify()
    
        if res != orig:
            print(values)
            print("Removal was not in order", res)
            break
    

    This test failed! Reducing the size of the orig list to even just 4 values, it went wrong with a shuffled values like [3,1,0,2]. A great candidate to then drill down further into what is causing the inconsistency (see further).

  5. You can continue with max_output tests in the same manner.

  6. Once you find which state leads to an inconsistent heap, start debugging with a debugger stepping through the code, inspecting names, ...etc

I can only urge to not give up on an issue that quickly: designing tests like above is actually not that hard, and it helps you identify problems in a reasonable time.

Conclusions

I found these issues in minify_down:

  1. At several places you have if .... == self.arr_len, which excludes cases where the test index is actually less than that limit, while those indexes should be allowed to pass that test too. So change to <=.

  2. There is a self.heap_arr[comp_index] > self.heap_arr[comp_index] test, which obviously makes no sense. Intended was self.heap_arr[comp_index] > self.heap_arr[comp_index 1]

  3. The condition temp_index 1 == self.arr_len should not only be corrected to use <= (point 1), but should be temp_index <= self.arr_len, since your intention is to access self.heap_arr[temp_index], not self.heap_arr[temp_index 1]

  4. Further down you perform a swap without checking that this swap is needed! So change that:

    self.heap_arr[input_index], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[input_index]
    

    to:

    if self.heap_arr[input_index] > self.heap_arr[comp_index]:
        self.heap_arr[input_index], self.heap_arr[comp_index] = self.heap_arr[comp_index], self.heap_arr[input_index]
    

With those changes the above test code will pass. Similar problems exist in maxify_down which you can correct along the same lines.

  • Related