Home > Software design >  Create new Data frame from an existing one in pyspark
Create new Data frame from an existing one in pyspark

Time:01-30

I created this dataframe with pySpark from txt file that includes searches queries and user ID.

`spark = SparkSession.builder.getOrCreate()
  
df = spark.read.option("header", "true") \
    .option("delimiter", "\t") \
    .option("inferSchema", "true") \
    .csv("/content/drive/MyDrive/my_data.txt")
    
df.select("AnonID","Query").show()`

And it look like that:

 ------ -------------------- 
|AnonID|               Query|
 ------ -------------------- 
|   142|      rentdirect.com|
|   142|www.prescriptionf...|
|   142|          staple.com|
|   142|          staple.com|
|   142|www.newyorklawyer...|
|   142|www.newyorklawyer...|
|   142|     westchester.gov|
|   142|       space.comhttp|
|   142|                dfdf|
|   142|                dfdf|
|   142|         vaniqa.comh|
|   142| www.collegeucla.edu|
|   142|          www.elaorg|
|   142|        207 ad2d 530|
|   142|        207 ad2d 530|
|   142|   broadway.vera.org|
|   142|   broadway.vera.org|
|   142|            vera.org|
|   142|   broadway.vera.org|
|   142|    frankmellace.com|
|   142|         ucs.ljx.com|
|   142|   attornyleslie.com|
|   142|merit release app...|
|   142| www.bonsai.wbff.org|
|   142|         loislaw.com|
|   142|           rapny.com|
|   142|      whitepages.com|
|   217|             lottery|
|   217|             lottery|
|   217|      ameriprise.com|
|   217|             susheme|
|   217|          united.com|
|   217|          mizuno.com|
|   217|p; .; p;' p; ' ;'...|
|   217|p; .; p;' p; ' ;'...|
|   217|asiansexygoddess.com|
|   217|            buddylis|
|   217|bestasiancompany.com|
|   217|             lottery|
|   217|             lottery|
|   217|             ask.com|
|   217|         weather.com|
|   217|      wellsfargo.com|
|   217|www.tabiecummings...|
|   217|     wanttickets.com|
|   217|           yahoo.com|
|   217|                   -|
|   217|    www.ngo-quen.org|
|   217|                   -|
|   217|             vietnam|
 ------ -------------------- 

What I want to do is that each user ID will be a row and each query will be in a column.

 ------ ------------ ---------
|ID |   1   |   2   |    3     .......
 ------ ------------ ---------
|142| query1|query2| query3
|217| query1|query2| query3
|993| query1|query2| query3
|1268| query1|query2| query3
|1326| query1|query2| query3
  .
  .        
  .

I tried to switch between rows and columns with the help of a search I did on Google, but I didn't succeed.

CodePudding user response:

You can group the dataframe by AnonID, and then pivot the Query column to create new columns for each unique query:

df = df.groupBy("AnonID").pivot("Query").agg(F.first("Query"))

If you have a lot of distinct values try

df = df.groupBy("AnonID").agg(F.collect_list("Query").alias("Queries"))

You can then rename the columns to 1, 2, 3, etc.

df = df.selectExpr("AnonID", *[f"`{i 1}` as `{i 1}`" for i in range(len(df.columns)-1)])
  • Related