Home > Software design >  Why is -math.inf and math.inf added to this minimax algorithm, if these starting values be replaced
Why is -math.inf and math.inf added to this minimax algorithm, if these starting values be replaced

Time:02-03

as you can see this is the code for an unbeatable AI TicTacToe game(game.py is the main file):

game.py

import math
import random


class Player():
    def __init__(self, letter):
        self.letter = letter

    def get_move(self, game):
        pass


class HumanPlayer(Player):
    def __init__(self, letter):
        super().__init__(letter)

    def get_move(self, game):
        valid_square = False
        val = None
        while not valid_square:
            square = input(self.letter   '\'s turn. Input move (0-9): ')
            try:
                val = int(square)
                if val not in game.available_moves():
                    raise ValueError
                valid_square = True
            except ValueError:
                print('Invalid square. Try again.')
        return val


class RandomComputerPlayer(Player):
    def __init__(self, letter):
        super().__init__(letter)

    def get_move(self, game):
        square = random.choice(game.available_moves())
        return square


class SmartComputerPlayer(Player):
    def __init__(self, letter):
        super().__init__(letter)

    def get_move(self, game):
        if len(game.available_moves()) == 9:
            square = random.choice(game.available_moves())
        else:
            square = self.minimax(game, self.letter)['position']
        return square

    def minimax(self, state, player):
        max_player = self.letter  # yourself
        other_player = 'O' if player == 'X' else 'X'

        # first we want to check if the previous move is a winner
        if state.current_winner == other_player:
            return {'position': None, 'score': 1 * (state.num_empty_squares()   1) if other_player == max_player else -1 * (
                        state.num_empty_squares()   1)}
        elif not state.empty_squares():
            return {'position': None, 'score': 0}

        if player == max_player:
            best = {'position': None, 'score': -math.inf}  # each score should maximize
        else:
            best = {'position': None, 'score': math.inf}  # each score should minimize
        for possible_move in state.available_moves():
            state.make_move(possible_move, player)
            sim_score = self.minimax(state, other_player)  # simulate a game after making that move

            # undo move
            state.board[possible_move] = ' '
            state.current_winner = None
            sim_score['position'] = possible_move  # this represents the move optimal next move


            if player == max_player:  # X is max player
                if sim_score['score'] > best['score']:
                    best = sim_score
            else:
                if sim_score['score'] < best['score']:
                    best = sim_score
        return best

player.py:

import math
import random


class Player():
    def __init__(self, letter):
        self.letter = letter

    def get_move(self, game):
        pass


class HumanPlayer(Player):
    def __init__(self, letter):
        super().__init__(letter)

    def get_move(self, game):
        valid_square = False
        val = None
        while not valid_square:
            square = input(self.letter   '\'s turn. Input move (0-9): ')
            try:
                val = int(square)
                if val not in game.available_moves():
                    raise ValueError
                valid_square = True
            except ValueError:
                print('Invalid square. Try again.')
        return val


class RandomComputerPlayer(Player):
    def __init__(self, letter):
        super().__init__(letter)

    def get_move(self, game):
        square = random.choice(game.available_moves())
        return square


class SmartComputerPlayer(Player):
    def __init__(self, letter):
        super().__init__(letter)

    def get_move(self, game):
        if len(game.available_moves()) == 9:
            square = random.choice(game.available_moves())
        else:
            square = self.minimax(game, self.letter)['position']
        return square

    def minimax(self, state, player):
        max_player = self.letter  # yourself
        other_player = 'O' if player == 'X' else 'X'

        # first we want to check if the previous move is a winner
        if state.current_winner == other_player:
            return {'position': None, 'score': 1 * (state.num_empty_squares()   1) if other_player == max_player else -1 * (
                        state.num_empty_squares()   1)}
        elif not state.empty_squares():
            return {'position': None, 'score': 0}

        if player == max_player:
            best = {'position': None, 'score': -math.inf}  # each score should maximize
        else:
            best = {'position': None, 'score': math.inf}  # each score should minimize
        for possible_move in state.available_moves():
            state.make_move(possible_move, player)
            sim_score = self.minimax(state, other_player)  # simulate a game after making that move

            # undo move
            state.board[possible_move] = ' '
            state.current_winner = None
            sim_score['position'] = possible_move  # this represents the move optimal next move

            if player == max_player:  # X is max player
                if sim_score['score'] > best['score']:
                    best = sim_score
            else:
                if sim_score['score'] < best['score']:
                    best = sim_score
        return best

I know that if the player is the maximizing player, then you start with a score of negative infinity, and look for a better score. Otherwise, you start with a positive score, and look for the worst score. One player tries to minimize the score, and the other player tries to maximize the score. But after countless hours of research I still don't know why -math.inf and math.inf is added to this minimax algorithm, if these starting values be replaced with the highest and lowest score later?

You would do me a very big favor, if you could explain it for dummies(as easy as possible), because I am a beginner :)

PS: I am referring to this code snippet:

if player == max_player:
            best = {'position': None, 'score': -math.inf}  
        else:
            best = {'position': None, 'score': math.inf}

CodePudding user response:

Is there a better starting value? Suppose you started without any score, or set it to None. Then you'd have to have a special case in all of your compares. The inf is used so that the algorithm always works, even on the first step.

CodePudding user response:

There can be two reasons:

  1. you must initialize with a value not larger than the maximum, which you don't know;

  2. after the fact you can detect situations such that no element was processed (and the value is still -inf).


This construct is often preferred to an alternative that sets the maximum to the value of the first element, because this can lengthen the code (and to a lesser extent, make 2 impossible).

  • Related