I am trying to transform an existing dataset by filtering out rows that I no longer need based on condition and by group. Subsequently, I would like to add additional column which essentially is a status column and an activity instance column. Here is the dataframe:-
rawdata<-structure(list(DateTime = c("20/02/2021 13:00", "20/02/2021 14:00",
"20/02/2021 15:00", "20/02/2021 16:00", "20/02/2021 17:00", "20/02/2021 18:00",
"20/02/2021 19:00", "20/02/2021 20:00", "20/02/2021 21:00", "20/02/2021 22:00",
"20/02/2021 23:00", "21/02/2021 00:00", "01/03/2021 00:00", "01/03/2021 01:00",
"01/03/2021 02:00", "01/03/2021 03:00", "01/03/2021 04:00", "01/03/2021 05:00",
"01/03/2021 06:00", "01/03/2021 07:00", "01/03/2021 08:00", "01/03/2021 09:00",
"01/03/2021 10:00", "01/03/2021 11:00", "01/03/2021 12:00", "01/03/2021 13:00",
"20/02/2021 13:00", "20/02/2021 14:00", "20/02/2021 15:00", "20/02/2021 16:00",
"20/02/2021 17:00", "20/02/2021 18:00", "20/02/2021 19:00", "20/02/2021 20:00",
"20/02/2021 21:00", "20/02/2021 22:00"), Cluster = c("Cluster 3",
"Cluster 3", "Cluster 3", "Cluster 3", "NotActive", "NotActive",
"NotActive", "Cluster 2", "Cluster 1", "Cluster 3", "NotActive",
"NotActive", "NotActive", "Cluster 5", "Cluster 5", "Cluster 4",
"NotActive", "NotActive", "NotActive", "NotActive", "Cluster 2",
"Cluster 2", "Cluster 3", "NotActive", "NotActive", "NotActive",
"NotActive", "NotActive", "NotActive", "NotActive", "NotActive",
"NotActive", "Cluster 1", "Cluster 2", "NotActive", "NotActive"
), UserID = c("AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "AAA",
"AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "BBB", "BBB", "BBB",
"BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB",
"BBB", "DDD", "DDD", "DDD", "DDD", "DDD", "DDD", "DDD", "DDD",
"DDD", "DDD")), class = "data.frame", row.names = c(NA, -36L))
print(rawdata)
DateTime Cluster UserID
DateTime Cluster UserID
1 20/02/2021 13:00 Cluster 3 AAA
2 20/02/2021 14:00 Cluster 3 AAA
3 20/02/2021 15:00 Cluster 3 AAA
4 20/02/2021 16:00 Cluster 3 AAA
5 20/02/2021 17:00 NotActive AAA
6 20/02/2021 18:00 NotActive AAA
7 20/02/2021 19:00 NotActive AAA
8 20/02/2021 20:00 Cluster 2 AAA
9 20/02/2021 21:00 Cluster 1 AAA
10 20/02/2021 22:00 Cluster 3 AAA
11 20/02/2021 23:00 NotActive AAA
12 21/02/2021 00:00 NotActive AAA
13 01/03/2021 00:00 NotActive AAA
14 01/03/2021 01:00 Cluster 5 BBB
15 01/03/2021 02:00 Cluster 5 BBB
16 01/03/2021 03:00 Cluster 4 BBB
17 01/03/2021 04:00 NotActive BBB
18 01/03/2021 05:00 NotActive BBB
19 01/03/2021 06:00 NotActive BBB
20 01/03/2021 07:00 NotActive BBB
21 01/03/2021 08:00 Cluster 2 BBB
22 01/03/2021 09:00 Cluster 2 BBB
23 01/03/2021 10:00 Cluster 3 BBB
24 01/03/2021 11:00 NotActive BBB
25 01/03/2021 12:00 NotActive BBB
26 01/03/2021 13:00 NotActive BBB
27 20/02/2021 13:00 NotActive DDD
28 20/02/2021 14:00 NotActive DDD
29 20/02/2021 15:00 NotActive DDD
30 20/02/2021 16:00 NotActive DDD
31 20/02/2021 17:00 NotActive DDD
32 20/02/2021 18:00 NotActive DDD
33 20/02/2021 19:00 Cluster 1 DDD
34 20/02/2021 20:00 Cluster 2 DDD
35 20/02/2021 21:00 NotActive DDD
36 20/02/2021 22:00 NotActive DDD
And for further explanation, here is the desired output:-
desiredoutput<-structure(list(DateTime = structure(c(1613826000, 1613829600,
1613833200, 1613836800, 1613840400, 1613851200, 1613854800, 1613858400,
1613862000, 1614560400, 1614564000, 1614567600, 1614571200, 1614585600,
1614589200, 1614592800, 1614596400, 1613847600, 1613851200, 1613854800
), class = c("POSIXct", "POSIXt"), tzone = "UTC"), Cluster = c("Cluster 3",
"Cluster 3", "Cluster 3", "Cluster 3", "NotActive", "Cluster 2",
"Cluster 1", "Cluster 3", "NotActive", "Cluster 5", "Cluster 5",
"Cluster 4", "NotActive", "Cluster 2", "Cluster 2", "Cluster 3",
"NotActive", "Cluster 1", "Cluster 2", "NotActive"), UserID = c("AAA",
"AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "BBB",
"BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "DDD", "DDD",
"DDD"), Status = c("Start", "Ongoing", "Ongoing", "Ongoing",
"Complete", "Start", "Ongoing", "Ongoing", "Complete", "Start",
"Ongoing", "Ongoing", "Complete", "Start", "Ongoing", "Ongoing",
"Complete", "Start", "Ongoing", "Complete"), Instance = c(1,
2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3)), row.names = c(NA,
-20L), class = c("tbl_df", "tbl", "data.frame"))
print(desiredoutput)
DateTime Cluster UserID Status Instance
<dttm> <chr> <chr> <chr> <dbl>
1 2021-02-20 13:00:00 Cluster 3 AAA Start 1
2 2021-02-20 14:00:00 Cluster 3 AAA Ongoing 2
3 2021-02-20 15:00:00 Cluster 3 AAA Ongoing 3
4 2021-02-20 16:00:00 Cluster 3 AAA Ongoing 4
5 2021-02-20 17:00:00 NotActive AAA Complete 5
6 2021-02-20 20:00:00 Cluster 2 AAA Start 1
7 2021-02-20 21:00:00 Cluster 1 AAA Ongoing 2
8 2021-02-20 22:00:00 Cluster 3 AAA Ongoing 3
9 2021-02-20 23:00:00 NotActive AAA Complete 4
10 2021-03-01 01:00:00 Cluster 5 BBB Start 1
11 2021-03-01 02:00:00 Cluster 5 BBB Ongoing 2
12 2021-03-01 03:00:00 Cluster 4 BBB Ongoing 3
13 2021-03-01 04:00:00 NotActive BBB Complete 4
14 2021-03-01 08:00:00 Cluster 2 BBB Start 1
15 2021-03-01 09:00:00 Cluster 2 BBB Ongoing 2
16 2021-03-01 10:00:00 Cluster 3 BBB Ongoing 3
17 2021-03-01 11:00:00 NotActive BBB Complete 4
18 2021-02-20 19:00:00 Cluster 1 DDD Start 1
19 2021-02-20 20:00:00 Cluster 2 DDD Ongoing 2
20 2021-02-20 21:00:00 NotActive DDD Complete 3
What I am after is that in the Cluster
column (by UserID
), if the value says NotActive
, keep the first NotActive
value and discard the remaining NotActive
rows until it is something else. As well, I would like to create a "Status" column, where the first value in this column corresponds to Start
, until the first NotActive
value, which will correspond to Complete
; everything else in between Ongoing
. Lastly, the Instance
column is just numerated from 1==Start to N==Complete in the Status
column.
Any help would be appreciated :)
CodePudding user response:
Here's a dplyr
way -
library(dplyr)
rawdata %>%
#for each user id
group_by(UserID) %>%
#drop the repeated the 'NotActive' rows
filter(Cluster != 'NotActive' | lag(Cluster != 'NotActive', default = TRUE)) %>%
#Drop the rows that begins with 'NotActive'.
filter(!(row_number() == 1 & Cluster == 'NotActive')) %>%
#Create a group column for each cycle
group_by(grp = cumsum(lag(Cluster == 'NotActive', default = TRUE)), .add = TRUE) %>%
#Create a status column which starts with 'Start' and ends with 'Complete'
#fill it with 'Ongoing' in between.
#Create an Instance column using row_number()
mutate(Status = c('Start', rep('Ongoing', n() - 2), 'Complete'),
Instance = row_number()) %>%
ungroup %>%
select(-grp)
This returns the following dataframe.
# DateTime Cluster UserID Status Instance
# <chr> <chr> <chr> <chr> <int>
# 1 20/02/2021 13:00 Cluster 3 AAA Start 1
# 2 20/02/2021 14:00 Cluster 3 AAA Ongoing 2
# 3 20/02/2021 15:00 Cluster 3 AAA Ongoing 3
# 4 20/02/2021 16:00 Cluster 3 AAA Ongoing 4
# 5 20/02/2021 17:00 NotActive AAA Complete 5
# 6 20/02/2021 20:00 Cluster 2 AAA Start 1
# 7 20/02/2021 21:00 Cluster 1 AAA Ongoing 2
# 8 20/02/2021 22:00 Cluster 3 AAA Ongoing 3
# 9 20/02/2021 23:00 NotActive AAA Complete 4
#10 01/03/2021 01:00 Cluster 5 BBB Start 1
#11 01/03/2021 02:00 Cluster 5 BBB Ongoing 2
#12 01/03/2021 03:00 Cluster 4 BBB Ongoing 3
#13 01/03/2021 04:00 NotActive BBB Complete 4
#14 01/03/2021 08:00 Cluster 2 BBB Start 1
#15 01/03/2021 09:00 Cluster 2 BBB Ongoing 2
#16 01/03/2021 10:00 Cluster 3 BBB Ongoing 3
#17 01/03/2021 11:00 NotActive BBB Complete 4
#18 20/02/2021 19:00 Cluster 1 DDD Start 1
#19 20/02/2021 20:00 Cluster 2 DDD Ongoing 2
#20 20/02/2021 21:00 NotActive DDD Complete 3