I am working with the R programming language. In this example, I have the following data:
library("dplyr")
df <- data.frame(b = rnorm(100,5,5), d = rnorm(100,2,2),
c = rnorm(100,10,10))
a <- c("a", "b", "c", "d", "e")
a <- sample(a, 100, replace=TRUE, prob=c(0.3, 0.2, 0.3, 0.1, 0.1))
a<- as.factor(a)
df$a = a
f <- c("a", "b", "c", "d", "e")
f <- sample(f, 100, replace=TRUE, prob=c(0.3, 0.2, 0.3, 0.1, 0.1))
f<- as.factor(f)
df$f = f
head(df)
b d c a f
1 6.896434 2.037835 2.867707 e a
2 -3.314758 2.681726 20.038918 d d
3 2.018130 2.229342 -8.341578 c a
4 9.738082 1.127069 18.337212 c c
5 2.442182 3.475735 27.875924 c c
6 5.061937 1.098709 6.166077 a e
I then have the following function ("my_subset_mean") that evaluates the "mean" value of df$c for different subsets of "a,b,d,f ":
my_subset_mean <- function(r1, r2, r3, r4){
subset <- df %>% filter(a %in% r1, f %in% r4, b > r2, d < r3 )
return(mean(subset$c))
}
In a previous question, I learned how to write a loop that evaluates the function "my_subset_mean" at random subsets of "a,b,d,f " :
create_output <- function() {
uv <- levels(df$a)
r1 <- sample(uv, sample(length(uv)))
uv1 <- levels(df$f)
r4 <- sample(uv1, sample(length(uv1)))
rgb <- range(df$b)
rgd <- range(df$d)
r2 <- runif(1, rgb[1], rgb[2])
r3 <- runif(1, rgd[1], rgd[2])
my_subset_mean <- my_subset_mean(r1, r2, r3, r4)
data.frame(r1 = toString(r1), r4 = toString(r4), r2, r3, my_subset_mean)
}
out <- do.call(rbind, replicate(100, create_output(), simplify = FALSE))
head(out)
r1 r4 r2 r3 my_subset_mean
1 a, c, b, e, d d 14.560821 3.4251138 NaN
2 d, e e, d, b, c 9.027482 -1.7108754 NaN
3 d e, b, a, d 1.447395 0.4279652 18.019990
4 a, e, b, c, d e -6.807861 2.6301878 7.424415
5 a, d d 8.307980 -1.8923647 NaN
6 a b, c, a 7.180056 -0.4022791 NaN
Question: Is it possible to write this loop ("create_output") so that sometimes, values of "r1, r2, r3, r4" are not considered? E.g.
r1 r4 r2 r3 my_subset_mean
1 NA d 14.56 3.4251138 5
2 d, e, d, b, NA NA -1.7108754 3.1
3 e, b, d 1.447 NA 18.019990
I was thinking that maybe this can be specified within the "levels" statement:
uv <- levels(df$a)
r1 <- sample(uv, sample(length(uv)))
Here, we can see the values of "uv":
uv
[1] "a" "b" "c" "d" "e"
Can something be done so that sometimes, the function "my_subset_mean" sometimes ignores the some of the subset conditions for "a, b, d,f"? E.g. the "mean" is only calculated using subset conditions on "a,d"?
Thanks
CodePudding user response:
You can modify the my_subset_mean
function from your previous question to include r4
value.
library(dplyr)
my_subset_mean <- function(r1=NA, r2=NA, r3=NA, r4 = NA) {
if (all(is.na(r1))) r1 <- unique(df$a)
if (all(is.na(r4))) r4 <- unique(df$f)
if (is.na(r2)) r2 <- -Inf
if (is.na(r3)) r3 <- Inf
s <- filter(df, a %in% r1 , f %in% r4, b > r2 , d < r3)
return(mean(s$c))
}
Then change create_output
function as -
create_output <- function() {
uv <- levels(df$a)
r1 <- sample(list(sample(uv, sample(length(uv))), NA), 1)[[1]]
uv1 <- levels(df$f)
r4 <- sample(list(sample(uv1, sample(length(uv1))), NA), 1)[[1]]
rgb <- range(df$b)
rgd <- range(df$d)
r2 <- sample(c(runif(1, rgb[1], rgb[2]), NA), 1)
r3 <- sample(c(runif(1, rgd[1], rgd[2]), NA), 1)
my_subset_mean <- my_subset_mean(r1, r2, r3, r4)
data.frame(r1 = toString(r1), r4 = toString(r4), r2, r3, my_subset_mean)
}
set.seed(123)
out <- do.call(rbind, replicate(100, create_output(), simplify = FALSE))
head(out)
# r1 r4 r2 r3 my_subset_mean
#1 NA c NA 4.2164973 12.095431
#2 a, b, c, d, e b, a, c NA 0.4394423 7.130999
#3 NA a, c, e, b 9.285701 NA 8.236054
#4 NA NA 14.060829 3.8960888 10.562523
#5 c, b, a, d NA NA NA 9.015613
#6 NA a, c, d 2.251218 NA 10.070425
Note that currently I have not assigned any probability for occurrence of NA
value hence the probability of having NA
as input for any of the argument is 50%. If you want to change that you can assign probs
value as per your choice in sample
.