I have two pandas dataframes (df1 and df2).
df1
address mon tue wed ...
address1 40 40 40 ...
address2 20 20 20 ...
address3 30 30 0 ...
address3 0 0 30 ...
... ... ... ... ...
df2
address mon tue wed ...
address1 0 15 0 ...
address2 0 6 0 ...
address3 15 0 0 ...
... ... ... ... ...
What I want to do is when the value in a column of df1 (eg. mon) is greather than 0, if the value in df2 is also greather than 0 then replace the value of df1 by the value of df2:
df1 modified
address mon tue wed ...
address1 40 15 40 ...
address2 20 6 20 ...
address3 15 30 0 ...
address3 0 0 30 ...
... ... ... ... ...
I'm trying this code based on this:
for index, _ in df1.iterrows():
if df1.loc[index, 'mon'] > 0:
df1.loc[index, 'mon'] = float(
df2.loc[(df2['address'] == df1[index, 'address']), 'mon'])
But I get a KeyError: (4, 'address')
Traceback (most recent call last):
File "/usr/lib64/python3.8/site-packages/pandas/core/indexes/base.py", line 3361, in get_loc
return self._engine.get_loc(casted_key)
File "pandas/_libs/index.pyx", line 76, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/index.pyx", line 108, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 5198, in pandas._libs.hashtable.PyObjectHashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 5206, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: (4, 'address')
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/mnt/project/script.py", line 78, in <module>
df2.loc[(df2['address'] == df1[index, 'address']), 'mon'])
File "/usr/lib64/python3.8/site-packages/pandas/core/frame.py", line 3458, in __getitem__
indexer = self.columns.get_loc(key)
File "/usr/lib64/python3.8/site-packages/pandas/core/indexes/base.py", line 3363, in get_loc
raise KeyError(key) from err
KeyError: (4, 'address')
What could I be doing wrong?
Thanks in advance.
CodePudding user response:
Use mask
and combine_first
.
Set address
column as index of both dataframes then create a boolean mask where df1 and df2 values are greater than 0. Use mask
to set each cell that match condition to NaN and use combine_first
to fill NaN values of df1 by values of df2.
df1 = df1.set_index('address')
df2 = df2.set_index('address').reindex(df1.index)
mask = df1.gt(0) & df2.gt(0)
df1 = df1.mask(mask).combine_first(df2).reset_index()
Output:
>>> df1
address mon tue wed
0 address1 40.0 15.0 40
1 address2 20.0 6.0 20
2 address3 15.0 30.0 0
3 address3 0.0 0.0 30