In this problem, 'A' and 'B' both store the same kind of data (page numbers). 'Hits_A' is a sum of hits according to 'A' (previous grouping, not shown). I'd like to sum 'Hits_A' based on column 'B', and then relate the values back to the page numbers on column 'A', like so:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3, 4, 5, 6, 7], 'B': [3, 4, 5, 2, 1, 1, 6],
'Hits_A': [10, 40, 50, 35, 24, 60, 30]})
tmp = df.drop('A', axis=1)
tmp = tmp.groupby('B').sum().reset_index()
tmp = tmp.rename(columns={'B':'A', 'Hits_A':'Hits_B'})
output = pd.merge(df, tmp, how='left', on='A').drop('B', axis=1)
print(df)
yields
A B Hits_A
0 1 3 10
1 2 4 40
2 3 5 50
3 4 2 35
4 5 1 24
5 6 1 60
6 7 6 30
print(output)
yields
A Hits_A Hits_B
0 1 10 84.0
1 2 40 35.0
2 3 50 10.0
3 4 35 40.0
4 5 24 50.0
5 6 60 30.0
6 7 30 NaN
These are the results I want to replicate in a less janky, cleaner looking manner. I'm not very used to things like lambda functions, and was wondering if this could all be achieved in fewer lines?
CodePudding user response:
We can groupby
and sum
then map
the grouped sum to column A
df['Hits_B'] = df['A'].map(df.groupby('B')['Hits_A'].sum())
A B Hits_A Hits_B
0 1 3 10 84.0
1 2 4 40 35.0
2 3 5 50 10.0
3 4 2 35 40.0
4 5 1 24 50.0
5 6 1 60 30.0
6 7 6 30 NaN