I would like to ask you about how to find the cumulative average of a specific column value in a pandas dataframe. First, the data looks like this:
firm | date | reviewer | rate |
---|---|---|---|
A | 2021-01-01 | a | 5 |
A | 2021-01-01 | b | 1 |
A | 2021-01-01 | c | 2 |
A | 2021-01-02 | d | 3 |
A | 2021-01-02 | e | 4 |
A | 2021-01-03 | f | 3 |
A | 2021-01-04 | g | 5 |
B | 2021-01-01 | h | 5 |
B | 2021-01-01 | i | 2 |
B | 2021-01-02 | j | 3 |
B | 2021-01-02 | k | 4 |
B | 2021-01-03 | a | 3 |
B | 2021-01-04 | b | 5 |
What I want to find is to get the average rating of a specific company by date, and add a column to find the cumulative average rating including today's average rating.
I want to make it into a dataframe like the one below.
firm | date | reviewer | rate | cum_avg_rate |
---|---|---|---|---|
A | 2021-01-01 | a | 5 | 2.667 |
A | 2021-01-01 | b | 1 | 2.667 |
A | 2021-01-01 | c | 2 | 2.667 |
A | 2021-01-02 | d | 3 | 3 |
A | 2021-01-02 | e | 4 | 3 |
A | 2021-01-03 | f | 3 | 3 |
A | 2021-01-04 | g | 5 | 3.286 |
B | 2021-01-01 | h | 5 | 3.5 |
B | 2021-01-01 | i | 2 | 3.5 |
B | 2021-01-02 | j | 3 | 3.5 |
B | 2021-01-02 | k | 4 | 3.5 |
B | 2021-01-03 | a | 3 | 3.4 |
B | 2021-01-04 | b | 5 | 3.667 |
The method I have tried so far is to create a new data frame that calculates the average score and the number of reviews using the 'groupby' method with firm and date, and use this to create a cumulative average for each day.
The code is below.
firm_gp=avg_mean_rate.groupby(['firm','date'])['mean']
firm_gp_count=avg_mean_rate.groupby(['firm','date'])['count']
avg_mean_rate['new_avg_grade']=( (firm_gp * firm_gp_count).cumsum())/firm_gp_count.cumsum()
However, the problem is that the following error occurs in the process of calculating the cumulative average for each day.
TypeError: unsupported operand type(s) for *: 'SeriesGroupBy' and 'method'
As the second method, I tried the following method using numpy.
def w_cum_avg(avg_mean_rate,mean,count):
d=avg_mean_rate['mean']
w= avg_mean_rate['count']
return(d*w).cumsum() / w.cumsum()
avg_mean_rate.groupby(['firm','date']).apply(w_cum_avg,'mean','count')
But this doesn’t work well, what I expected.
I would appreciate it if you could teach me how to get results.
Thank you in advance.
CodePudding user response:
We could compute the daily sum
and count
per firm
with groupby aggregate
then groupby cumsum
to get the daily cumulative total per firm
. Compute the mean by dividing and join
back to the DataFrame:
g = (
df.groupby(['firm', 'date'])['rate']
.agg(['sum', 'count'])
.groupby(level='firm').cumsum()
)
df = df.join(
g['sum'].div(g['count']).rename('cum_avg_rate'),
on=['firm', 'date'] # align index on columns
)
df
:
firm date reviewer rate cum_avg_rate
0 A 2021-01-01 a 5 2.666667
1 A 2021-01-01 b 1 2.666667
2 A 2021-01-01 c 2 2.666667
3 A 2021-01-02 d 3 3.000000
4 A 2021-01-02 e 4 3.000000
5 A 2021-01-03 f 3 3.000000
6 A 2021-01-04 g 5 3.285714
7 B 2021-01-01 h 5 3.500000
8 B 2021-01-01 i 2 3.500000
9 B 2021-01-02 j 3 3.500000
10 B 2021-01-02 k 4 3.500000
11 B 2021-01-03 a 3 3.400000
12 B 2021-01-04 b 5 3.666667
Setup:
import pandas as pd
df = pd.DataFrame({
'firm': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B'],
'date': ['2021-01-01', '2021-01-01', '2021-01-01', '2021-01-02',
'2021-01-02', '2021-01-03', '2021-01-04', '2021-01-01',
'2021-01-01', '2021-01-02', '2021-01-02', '2021-01-03',
'2021-01-04'],
'reviewer': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'a',
'b'],
'rate': [5, 1, 2, 3, 4, 3, 5, 5, 2, 3, 4, 3, 5]
})