I would like create a new column which references a date column - 1 year and displays the corresponding values:
import pandas as pd
Input DF
df = pd.DataFrame({'consumption': [0,1,3,5], 'date':[pd.to_datetime('2017-04-01'),
pd.to_datetime('2017-04-02'),
pd.to_datetime('2018-04-01'),
pd.to_datetime('2018-04-02')]})
>>> df
consumption date
0 2017-04-01
1 2017-04-02
3 2018-04-01
5 2018-04-02
Expected DF
df = pd.DataFrame({'consumption': [0,1,3,5],
'prev_year_consumption': [np.NAN,np.NAN,0,1],
'date':[pd.to_datetime('2017-04-01'),
pd.to_datetime('2017-04-02'),
pd.to_datetime('2018-04-01'),
pd.to_datetime('2018-04-02')]})
>>> df
consumption prev_year_consumption date
0 NAN 2017-04-01
1 NAN 2017-04-02
3 0 2018-04-01
5 1 2018-04-02
So prev_year_consumption is are simply values from the consumption column where 1 year is subtracted from date dynamically.
in SQL I would probably do something like
SELECT df_past.consumption as prev_year_consumption, df_current.consumption
FROM df as df_current
LEFT JOIN ON df df_past ON year(df_current.date) = year(df_past.date) - 1
Appreciate any hints
CodePudding user response:
The notation in pandas
is similar. We are still doing a self merge
however we need to specify that the right_on
(or left_on
) has a DateOffset
of 1 year:
new_df = df.merge(
df,
left_on='date',
right_on=df['date'] pd.offsets.DateOffset(years=1),
how='left'
)
new_df
:
date consumption_x date_x consumption_y date_y
0 2017-04-01 0 2017-04-01 NaN NaT
1 2017-04-02 1 2017-04-02 NaN NaT
2 2018-04-01 3 2018-04-01 0.0 2017-04-01
3 2018-04-02 5 2018-04-02 1.0 2017-04-02
We can further drop
and rename
columns to get exact output:
new_df = df.merge(
df,
left_on='date',
right_on=df['date'] pd.offsets.DateOffset(years=1),
how='left'
).drop(columns=['date_x', 'date_y']).rename(columns={
'consumption_y': 'prev_year_consumption'
})
new_df
:
date consumption_x prev_year_consumption
0 2017-04-01 0 NaN
1 2017-04-02 1 NaN
2 2018-04-01 3 0.0
3 2018-04-02 5 1.0