I am having trouble finding a solution to plot multiple boxplots created from statistics into one graph.
From another application, I get a Dataframe that contains the different metrics needed to draw boxplots (median, quantile 1, ...). While I am able to plot a single boxplot from these statistics with the following code:
data = pd.read_excel("data.xlsx")
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6), sharey=True)
row = data.iloc[:, 0]
stats = [{
"label": i, # not required
"mean": row["sharpeRatio"], # not required
"med": row["sharpeRatio_med"],
"q1": row["sharpeRatio_q1"],
"q3": row["sharpeRatio_q3"],
# "cilo": 5.3 # not required
# "cihi": 5.7 # not required
"whislo": row["sharpeRatio_min"], # required
"whishi": row["sharpeRatio_max"], # required
"fliers": [] # required if showfliers=True
}]
axes.bxp(stats)
plt.show()
I am struggling to create a graph containing boxplots from all the rows in the dataframe. Do you have an idea how to achieve this?
CodePudding user response:
You can pass a list of dictionaries to the bxp
method. The easiest way to get such a list from your existing code is to put the dictionary construction inside a function and call it for each row of the dataframe.
Note that data.iloc[:, 0]
would be the first column, not the first row.
import matplotlib.pyplot as plt
import pandas as pd
def stats(row):
return {"med": row["sharpeRatio_med"],
"q1": row["sharpeRatio_q1"],
"q3": row["sharpeRatio_q3"],
"whislo": row["sharpeRatio_min"],
"whishi": row["sharpeRatio_max"]}
data = pd.DataFrame({"sharpeRatio_med": [3, 4, 2],
"sharpeRatio_q1": [2, 3, 1],
"sharpeRatio_q3": [4, 5, 3],
"sharpeRatio_min": [1, 1, 0],
"sharpeRatio_max": [5, 6, 4]})
fig, axes = plt.subplots()
axes.bxp([stats(data.iloc[i, :]) for i in range(len(data))],
showfliers=False)
plt.show()