Home > Software engineering >  raise InvalidIndexError(key) strange
raise InvalidIndexError(key) strange

Time:11-07

I am trying this

    import dask.dataframe as dd
    import pandas as pd
    
    salary_df = pd.DataFrame({"Salary":[10000, 50000, 25000, 30000, 7000, 100000]})
    salary_category = pd.DataFrame({"Hi":[5000, 20000, 25000, 30000, 90000, 120000],
                            "Low":[0,  5001, 20001, 25001, 30001, 90001],
                            "category":["Very Poor", "Poor", "Medium", "Rich", "Super Rich", "Ultra Rich" ]
                            })
    sal_ddf = dd.from_pandas(salary_df, npartitions=10)
    salary_category.index = pd.IntervalIndex.from_arrays(salary_category['Low'],salary_category['Hi'],closed='both')
    sal_ddf['Category'] = sal_ddf['Salary'].map_partitions(lambda x : salary_category.iloc[salary_category.index.get_loc(x)]['category'], meta=('Category', 'str'))
    
    print(salary_category)
    print(sal_ddf.head())

The output I have for Salary_category is

                         Hi    Low    category
    [0, 5000]          5000      0   Very Poor
    [5001, 20000]     20000   5001        Poor
    [20001, 25000]    25000  20001      Medium
    [25001, 30000]    30000  25001        Rich
    [30001, 90000]    90000  30001  Super Rich
    [90001, 120000]  120000  90001  Ultra Rich

Not 10000 would fall under the category of Poor no ? But I still get an index error like this

        sal_ddf['Category'] = sal_ddf['Salary'].map_partitions(lambda x : salary_category.iloc[salary_category.index.get_loc(x)]['category'], meta=('Category', 'str'))
      File "C:\Python\Python310\lib\site-packages\pandas\core\indexes\interval.py", line 613, in get_loc
        raise InvalidIndexError(key)
    pandas.errors.InvalidIndexError: 0    10000

Why the key error ?

CodePudding user response:

Using .map_partitions assumes that a complete dataframe is passed, while the code above passes a dask series into it. This causes problems. A quick way to correct is is to define a custom function and apply it with .map_partitions:

sal_ddf = dd.from_pandas(salary_df, npartitions=10)
salary_category.index = pd.IntervalIndex.from_arrays(salary_category['Low'],salary_category['Hi'],closed='both')


def get_salary(df):
    df = df.copy()
    df['category'] = df['Salary'].apply(lambda x: salary_category.iloc[salary_category.index.get_loc(x)]['category'])
    return df

sal_ddf = sal_ddf.map_partitions(get_salary)

print(salary_category)
print(sal_ddf.compute())
  • Related