I am having trouble updating the number of bins when updating the plot with buttons. This is an examplary short dataframe. In the full version, there are a lot more rows so there is a point in using the initial nbins = 100. However, I would like to change the number of bins for each column when updating the histogram.
dataset = pd.DataFrame(
{'age': [19, 18, 28, 33, 32],
'bmi': [27.9, 33.77, 33.0, 22.705, 28.88],
'children': [0, 1, 3, 0, 0]}
)
fig = px.histogram(x = dataset['age'], nbins = 100)
fig.update_layout(xaxis_title = 'age')
buttons = []
for column in dataset.columns:
buttons.append(
dict(
args = [
{'x': [dataset[column]]},
{'xaxis.title': column},
# __________________________________
# I TRIED THIS since fig.layout.figure.data[0].nbinsx = 100
# {'figure.data[0].nbinsx': 5}
# __________________________________
],
label = column,
method = 'update',
)
)
fig.update_layout(
updatemenus = [
dict(type = 'buttons', buttons = buttons,
direction = 'right', x=1, y=1.15)
],
title_text = 'Histograms'
)
fig.show()
This is how the histogram looks with the button options available.
**When I change the column that the histogram is constructed for, the number of bins do not change. How do I fix this? I tried to **
THIS IS THE IMAGE OF THE HISTOGRAM! I HAVE YET TO EARN REPUTATION POINTS FOR IMAGE EMBEDDING TO BE POSSIBLE.
CodePudding user response:
- you have not defined number of bins you want per column. Have used
col_bins = {c: int(dataset[c].max()-dataset[c].min()) for c in dataset.columns}
to generate values from your data - from a style perspective I use list and dict comprehensions to build updatemenus structures
- your code is close, key part is understanding args of update method. It's a list where first element is dict to update traces and second element is a dict to update layout. There are two updates to traces: x and nbinsx so they are including in one dict
import pandas as pd
import plotly.express as px
dataset = pd.DataFrame(
{
"age": [19, 18, 28, 33, 32],
"bmi": [27.9, 33.77, 33.0, 22.705, 28.88],
"children": [0, 1, 3, 0, 0],
}
)
col_bins = {c: int(dataset[c].max()-dataset[c].min()) for c in dataset.columns}
fig = px.histogram(x=dataset["age"], nbins=100)
fig.update_layout(
updatemenus=[
{
"buttons": [
{
"label": c,
"method": "update",
"args": [{"x": [dataset[c]], "nbinsx":bins}, {"xaxis.title":c}],
}
for c, bins in col_bins.items()
],
"direction": "right",
"type":"buttons",
"x":1,
"y":1.15
}
],
xaxis_title="age",
title_text = 'Histograms'
)