I have this type of data:
df <- data.frame(
Utt = c(rep("oh", 10), rep("ah", 10)),
name = rep(LETTERS[1:2], 10),
value = c(0.5,2,2,2,2,1,0,1,3.5,1,
2.2,2.3,1.9,0.1,0.3,1.8,3,4,3.5,2)
)
I need to know whether within in each group of Utt
and name
, there are continuous value
increases and how large these increases are.
EDIT: I've cobbled together this code, which produces the right result but seems convoluted:
df %>%
# order by name:
arrange(name) %>%
group_by(name, Utt) %>%
# mutate:
mutate(
# is there an increase from one value to the next?
is_increase = ifelse(lag(value) < value, value, NA),
# what's the difference between these values?
diff = is_increase - lag(value)) %>%
group_by(name, Utt, grp = rleid(!is.na(diff))) %>%
# sum the contiguous values:
summarise(increase_size = sum(diff, na.rm = TRUE)) %>%
# remove 0 values:
filter(!increase_size == 0) %>%
# put same-group increase_sizes in the same row:
summarise(
increase_size = str_c(increase_size, collapse = ', '))
# A tibble: 3 x 3
# Groups: name [2]
name Utt increase_size
<chr> <chr> <chr>
1 A ah 3.2
2 A oh 1.5, 3.5
3 B ah 3.9
NOTE: Ideally, the expected outcome would be:
1 A ah 3.2
2 A oh 1.5, 3.5
3 B ah 3.9
4 B oh NA
Is there a better (i.e., more concise, more clever) dplyr
solution?
CodePudding user response:
Use this function to find what you want.
f <- function(x) {
ind <- which(x > lag(x))
if (length(ind) == 0) {
return(NA)
}
ind2 <- ind[which(lead(ind, default = max(ind) 2) - ind > 1)]
ind1 <- ind[which(ind - lag(ind, default = min(ind) - 2) > 1)] - 1
return(paste0(x[ind2] - x[ind1], collapse = ", "))
}
And use the function in summarise:
df %>% group_by(name, Utt) %>% summarise(increase = f(value))
CodePudding user response:
Using tidyverse
, my solution was similar to yours. One possible modification might be to subset your columns before summing instead of filtering. This will keep all combinations of name
and Utt
and allow for NA
for increase_size
in the end. Since the column increase_size
is character type, you can convert an empty string to NA
.
library(data.table)
library(tidyverse)
df %>%
arrange(name) %>%
group_by(name, Utt) %>%
mutate(diff = c(0, diff(value))) %>%
group_by(grp = rleid(diff < 0), .add = T) %>%
summarise(increase_size = sum(diff[diff > 0], na.rm = T)) %>%
group_by(name, Utt) %>%
summarise(increase_size = toString(increase_size[increase_size > 0])) %>%
mutate(increase_size = na_if(increase_size, ""))
Output
name Utt increase_size
<chr> <chr> <chr>
1 A ah 3.2
2 A oh 1.5, 3.5
3 B ah 3.9
4 B oh NA