I'm looking to speed up my code that takes ~80 milliseconds for 300 sets to generate multiset_permutations
from sympy
. Ideally this would take only a few milliseconds; also the more items, the slower it gets.
What can I do to make my code faster? Multi-threading? Or convert to C
? Any help here on speeding this up would be greatly appreciated.
import numpy as np
from time import monotonic
from sympy.utilities.iterables import multiset_permutations
milli_time = lambda: int(round(monotonic() * 1000))
start_time = milli_time()
num_indices = 5
num_items = 300
indices = np.array([list(multiset_permutations(list(range(num_indices)))) for _ in range(num_items)])
print(indices)
[[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
...
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]
[[0 1 2 3 4]
[0 1 2 4 3]
[0 1 3 2 4]
...
[4 3 1 2 0]
[4 3 2 0 1]
[4 3 2 1 0]]]
print('Multiset Perms:', milli_time() - start_time, 'milliseconds')
Multiset Perms: 88 milliseconds
** Code Update to Reduce extra computations by 2/3 **
import itertools
import numpy as np
from time import time, monotonic
from sympy.utilities.iterables import multiset_permutations
milli_time = lambda: int(round(monotonic() * 1000))
start_time = milli_time()
num_colors = 5
color_range = list(range(num_colors))
total_media = 300
def all_perms(elements):
if len(elements) <= 1:
yield elements # Only permutation possible = no permutation
else:
# Iteration over the first element in the result permutation:
for (index, first_elmt) in enumerate(elements):
other_elmts = elements[:index] elements[index 1:]
for permutation in all_perms(other_elmts):
yield [first_elmt] permutation
multiset = list(multiset_permutations(color_range))
# multiset = list(itertools.permutations(color_range))
# multiset = list(all_perms(color_range))
_range = range(total_media)
perm_indices = np.array([multiset for _ in _range])
print('Multiset Perms:', milli_time() - start_time)
Multiset Perms: 34 milliseconds
CodePudding user response:
First of all, you do not need to recompute the permutations.
Moreover, np.array([multiset for _ in _range])
is expensive because Numpy have to transform multiset
total_media
times. You can solve that using np.array([multiset]).repeat(total_media, axis=0)
.
Finally, sympy is not the fastest implementation to perform such a computation. A faster implementation consists in using itertools
instead:
num_colors = 5
total_media = 300
color_range = list(range(num_colors))
multiset = list(set(itertools.permutations(color_range)))
perm_indices = np.array([multiset], dtype=np.int32).repeat(total_media, axis=0)
However, this itertools-based implementation do not preserve the order of the permutations. If this is important, you can use np.sort
on the Numpy array converted from multiset
(with a specific axis and before applying repeat
).
On my machine, this takes about 0.15 ms.