Home > Software engineering >  How to plot and annotate grouped bars
How to plot and annotate grouped bars

Time:12-07

I have the following code

import numpy as np
import matplotlib.pyplot as plt

oct_data = [10, 24, 25, 30]
nov_data = [12, 42, 21, 78]

labels = ['Account_1', 'Account_2', 'Account_3', 'Account_4']
bar_width = 0.4

rect_1 = np.arange(0, len(oct_data)*2 ,2) 
rect_2 = [x   bar_width for x in rect_1]

plt.bar(rect_1, oct_data, color='#7f6d5f', width=bar_width, edgecolor='white', label='Month_1')
plt.bar(rect_2, nov_data, color='#557f2d', width=bar_width, edgecolor='white', label='Month_2')

plt.ylabel('Cost ($)', fontsize=10)

plt.legend()
plt.show()

Which gives me the following figure: enter image description here

As you can see, my xticks (Account_1, Account_2, ...) are not centered. As I understand, this command should do the job, but it doesn't.

plt.xticks([r   bar_width for r in range(0, len(oct_data)*2, 2)], labels)

I also would like to add the value of the heigh inside the bar. Usually, this is how I do it with a "single bar" graph:

  for i in range(len(labels)):
    plt.text(i, oct_data[i]//2, oct_data[i], ha = 'center', color = 'black')

But that does not work here.

Any help would be greatly appreciated. I am a total beginner with Matplotlib.

CodePudding user response:

There is align option you can use:

# number of data points
num_data = len(labels)

bars1 = plt.bar(range(num_data), oct_data, color='#7f6d5f', 
                align='edge', width=-bar_width,    # align and negative width for left bars
                edgecolor='white', label='Month_1')
bars1 = plt.bar(range(num_data), nov_data, color='#557f2d', 
                align='edge', width=bar_width,     # align and positive width for right bars
                edgecolor='white', label='Month_2')

# set xticks
plt.xticks(range(num_data), labels)

For annotation, it's recommend to have an axis instance:

fig, ax = plt.subplots()
# other plot commands

for patch in ax.patches:
    ax.text(patch.get_x()   patch.get_width()/2,
            patch.get_height()/2,
            f'{patch.get_height()}',
            verticalalignment='center', horizontalalignment='center')

Output:

enter image description here


Update: All code:

oct_data = [10, 24, 25, 30]
nov_data = [12, 42, 21, 78]

labels = ['Account_1', 'Account_2', 'Account_3', 'Account_4']
bar_width = 0.4

fig, ax = plt.subplots()

# number of data points
num_data = len(labels)

bars1 = plt.bar(range(num_data), oct_data, color='#7f6d5f', 
                align='edge', width=-bar_width,    # align and negative width for left bars
                edgecolor='white', label='Month_1')
bars1 = plt.bar(range(num_data), nov_data, color='#557f2d', 
                align='edge', width=bar_width,     # align and positive width for right bars
                edgecolor='white', label='Month_2')

for patch in ax.patches:
    ax.text(patch.get_x()   patch.get_width()/2,
            patch.get_height()/2,
            f'{patch.get_height()}',
            verticalalignment='center', horizontalalignment='center')

# set xticks
plt.xticks(range(num_data), labels)
plt.ylabel('Cost ($)', fontsize=10)

plt.legend()
plt.show()

CodePudding user response:

  • The easiest solution is to use pandas. The puts the data in an object which easily facilitates further analysis, and the plot API properly manages the spacing of grouped bars.
    • This implementation uses only 6 lines of code, compared to 18 lines.
  • Use enter image description here

  • Related