I have two dataframes. One is the basevales (df) and the other is an offset (df2). How do I create a third dataframe that is the first dataframe offset by matching values (the ID) in the second dataframe?
This post doesn't seem to do the offset... Update only some values in a dataframe using another dataframe
import pandas as pd
# initialize list of lists
data = [['1092', 10.02], ['18723754', 15.76], ['28635', 147.87]]
df = pd.DataFrame(data, columns = ['ID', 'Price'])
offsets = [['1092', 100.00], ['28635', 1000.00], ['88273', 10.]]
df2 = pd.DataFrame(offsets, columns = ['ID', 'Offset'])
print (df)
print (df2)
>>> print (df)
ID Price
0 1092 10.02
1 18723754 15.76 # no offset to affect it
2 28635 147.87
>>> print (df2)
ID Offset
0 1092 100.00
1 28635 1000.00
2 88273 10.00 # < no match
This is want I want to produce: The price has been offset by matching
ID Price
0 1092 110.02
1 18723754 15.76
2 28635 1147.87
I've also looked at Pandas Merging 101
I don't want to add columns to the dataframe, and I don;t want to just replace column values with values from another dataframe.
What I want is to add (sum) column values from the other dataframe to this dataframe, where the IDs match.
The closest I come is df_add=df.reindex_like(df2) df2
but the problem is that it sums all columns - even the ID column.
CodePudding user response:
Try this :
df['Price'] = pd.merge(df, df2, on=["ID"], how="left")[['Price','Offset']].sum(axis=1)