I'm trying to make a function template that takes a function template as a template argument and then returns the result of that function when invoked with the normal function parameters passed in. It would be used like this:
auto fooPtr = func<std::make_unique, Foo>(...);
The point of the function is to allow template type deduction even when letting another function perform construction of an instance. I already do this manually in a lot of places in my code like this:
auto fooPtr = std::make_unique<decltype(Foo{...})>(...);
I got the idea of a helper function from this answer to a question I posted. He suggested to make one for a specific type but I want a function that can be used for any type.
Here's what I've come up with so far:
template
<auto F, template<typename U> class T, typename... Args>
std::result_of_t<decltype(F)>
func(Args&&... args, std::enable_if_t<std::is_invocable_v<decltype(F), Args...>>* = nullptr)
{
return F<decltype(T{std::forward<Args>(args)...})>(std::forward<Args>(args)...);
}
But I can't get it to work.
Am I on the right track? Is what I'm trying to do even possible?
CodePudding user response:
You can't pass a templated function as a template argument unfortunately unless you specify the template arguments explicitly, e.g.:
template<auto T>
auto func(auto&&... args) {
return T(std::forward<decltype(args)>(args)...);
}
struct Foo { Foo(int i) {} };
int main() {
auto unique_foo = func<std::make_unique<Foo, int>>(1);
}
You can however pass around templated function objects without problems, so the following would work:
template<class T>
struct unique {
auto operator()(auto&&... args) {
return std::make_unique<T>(std::forward<decltype(args)>(args)...);
}
};
template<class T>
struct shared {
auto operator()(auto&&... args) {
return std::make_shared<T>(std::forward<decltype(args)>(args)...);
}
};
template<template<class> class F, class T, class... Args>
requires std::is_invocable_v<F<T>, Args...>
auto func(Args&&... args) {
return F<T>{}(std::forward<Args>(args)...);
}
struct Foo { Foo(int i) {} };
int main(){
auto foo_unique = func<unique, Foo>(1);
auto foo_shared = func<shared, Foo>(2);
}
If you also need to deduce the template parameters of your class by the parameters passed to std::make_unique
(like in your linked example), you can add an overload for func
that deals with templated types:
template<template<class...> class T, class... Args>
using deduced_type = decltype(T{std::declval<Args>()...});
template<template<class> class F, template<class...> class T, class... Args>
requires std::is_invocable_v<F<deduced_type<T,Args...>>, Args...>
auto func(Args&&... args) {
return F<deduced_type<T, Args...>>{}(std::forward<Args>(args)...);
}
that deduces the template parameters to your type T
based on the passed in parameters.
template<class A, class B>
struct Foo { Foo(A,B) {} };
struct Bar { Bar(int i) {} };
int main(){
// automatically deduces the types for A, B in Foo based on arguments
auto foo_unique = func<unique, Foo>(1, 2);
// the normal overload of func handles non-templated classes:
auto bar_unique = func<unique, Bar>(1);
}