The below MWE code works fine. It allows the user to click on a radio button to choose the method for aggregating data: by either period 1 or period 2 in this case.
In the larger App this is to be deployed in, there are many columns to aggregate. Not just 2 like in this MWE. So I'm trying to create a general function that serves the purpose of sumColA()
and sumColB()
shown below. In the commented-out code below you can see one of my attempts. The lines are commented-out because they don't work.
How can I create a reactive function similar in concept to sumCol()
where the it would be invoked with something like sumCol("ColA")
, sumCol("ColB")
, or something similar? In the full App there are too many columns to aggregate to create multiple versions of sumColA()
, sumColB()
, etc.
MWE code:
library(shiny)
data <- data.frame(
Period_1 = c("2020-01", "2020-02", "2020-03", "2020-01", "2020-02", "2020-03"),
Period_2 = c(1, 2, 3, 3, 1, 2),
ColA = c(10, 20, 30, 40, 50, 60),
ColB = c(15, 25, 35, 45, 55, 65)
)
ui <-
fluidPage(
h3("Data table:"),
tableOutput("data"),
h3("Sum the data table columns:"),
radioButtons(
inputId = "dataView",
label = NULL,
choiceNames = c("By period 1", "By period 2"),
choiceValues = c("Period_1", "Period_2"),
selected = "Period_1",
inline = TRUE
),
tableOutput("totals")
)
server <- function(input, output, session) {
sumColA <- reactive({
fmlaA <- as.formula(paste("ColA", input$dataView, sep = " ~ "))
aggregate(fmlaA, data, sum)
})
sumColB <- reactive({
fmlaB <- as.formula(paste("ColB", input$dataView, sep = " ~ "))
aggregate(fmlaB, data, sum)
})
### Create sumCol function ###
# sumCol <- function (x)
# {reactive({
# fmla <- as.formula(paste("x", input$dataView, sep = " ~ "))
# aggregate(fmla, data, sum)
# })
# }
### End sumCol ###
output$data <- renderTable(data)
output$totals <- renderTable({
totals <- as.data.frame(c(sumColA(), sumColB()[2]))
# totals <- as.data.frame(c(sumCol(ColA), sumCol(ColB)[2]))
colnames(totals) <- c(input$dataView, "Sum Col A", "Sum Col B")
totals
})
}
shinyApp(ui, server)
CodePudding user response:
Just create one reactive object data
and another reactive table summed_data
containing the sums of all columns:
library(shiny)
library(tidyverse)
ui <-
fluidPage(
h3("Data table:"),
tableOutput("data"),
h3("Sum the data table columns:"),
radioButtons(
inputId = "grouping",
label = NULL,
choiceNames = c("By period 1", "By period 2"),
choiceValues = c("Period_1", "Period_2"),
selected = "Period_1",
inline = TRUE
),
tableOutput("sums")
)
server <- function(input, output, session) {
data <- reactive({
# example data. Might change dynamically
data.frame(
Period_1 = c("2020-01", "2020-02", "2020-03", "2020-01", "2020-02", "2020-03"),
Period_2 = c(1, 2, 3, 3, 1, 2),
ColA = c(10, 20, 30, 40, 50, 60),
ColB = c(15, 25, 35, 45, 55, 65)
)
})
summed_data <- reactive({
data() %>%
group_by(!!sym(input$grouping)) %>%
select(matches("^Col")) %>%
summarise(across(everything(), sum))
})
output$data <- renderTable(data())
output$sums <- renderTable(summed_data())
}
shinyApp(ui, server)
CodePudding user response:
Here is a solution with dplyr
and magrittr
package.
Details of the change are in code comments.
library(shiny)
library(dplyr) # for data manipulation
library(magrittr) # for pipe operator
data <- data.frame(
Period_1 = c("2020-01", "2020-02", "2020-03", "2020-01", "2020-02", "2020-03"),
Period_2 = c(1, 2, 3, 3, 1, 2),
ColA = c(10, 20, 30, 40, 50, 60),
ColB = c(15, 25, 35, 45, 55, 65)
)
dataView_choices <- c("Period_1", "Period_2") # define choices for select input
ui <-
fluidPage(
h3("Data table:"),
tableOutput("data"),
h3("Sum the data table columns:"),
radioButtons(
inputId = "dataView",
label = NULL,
choiceNames = c("By period 1", "By period 2"),
choiceValues = dataView_choices, # choices for select input
selected = "Period_1",
inline = TRUE
),
tableOutput("totals")
)
server <- function(input, output, session) {
output$data <- renderTable(data)
output$totals <- renderTable({
totals <- data %>%
select(-setdiff(dataView_choices, input$dataView)) %>% # remove other periods in the select input
group_by_(input$dataView) %>% # group by the selected period
summarise(across(everything(), sum, .names = "Sum_{.col}")) # sum of all columns with a "Sum_" prefix
totals
})
}
shinyApp(ui, server)