Home > Software engineering >  Transform pandas dataframe as per the image below
Transform pandas dataframe as per the image below

Time:12-22

Please help me understand what will be the best way to do the transformation of pandas DataFrame in the image shown below.

dct = {'section': {0: 1, 1: 1, 2: 1, 3: 1, 4: 2, 5: 2, 6: 3, 7: 3, 8: 3},
 'friendly': {0: 5, 1: 5, 2: 5, 3: 4, 4: 3, 5: 1, 6: 2, 7: 5, 8: 5}}
df = pd.DataFrame(dct)

5 : Excellent 4 : Very Good 3 : Good 2 : Just Okay 1 : Poor

INPUT :

enter image description here

OUTPUT :

enter image description here

CodePudding user response:

Use crosstab for count, then get percentages to df2 by divide by sum, join by concat with keys for MultiIndex, sorting it and flatten in map:

d = {5 : 'Excellent', 4 : 'Very Good', 3 : 'Good', 2 : 'Just Okay', 1 : 'Poor'}

df1 = pd.crosstab(df['section'], df['friendly'])
df2 = df1.div(df1.sum(axis=1), axis=0).mul(100).round().astype(int)

df = (pd.concat([df1, df2], keys=('Count','Per'), axis=1)
        .sort_index(axis=1, ascending=[False, True], level=[1,0])
        .rename(columns=d))

df.columns = df.columns.map(lambda x: f'{x[1]}_{x[0]}')
df = df.reset_index()
print (df)
   section  Excellent_Count  Excellent_Per  Very Good_Count  Very Good_Per  \
0        1                3             75                1             25   
1        2                0              0                0              0   
2        3                2             67                0              0   

   Good_Count  Good_Per  Just Okay_Count  Just Okay_Per  Poor_Count  Poor_Per  
0           0         0                0              0           0         0  
1           1        50                0              0           1        50  
2           0         0                1             33           0         0  
  • Related