Following is my dataset:
Result | course1 | course2 | course3 |
---|---|---|---|
pass | 15 | 17 | 18 |
pass | 12 | 14 | 19 |
Fail | 9 | 13 | 3 |
Fail | 3 | 2 | 0 |
pass | 14 | 11 | 20 |
Fail | 5 | 0 | 7 |
I want to plot a grouped bar graph. I am able to plot following graphs but I want both the results in same graph.
par(mfrow=c(1,1))
options(scipen=999)
coul <- brewer.pal(3, "Set2")
# Bar graph for passed courses
result_pass <-data %>% filter(Result=='Pass') %>% summarize(c1_tot=sum(course1),
c2_tot = sum(course2), c3_tot = sum(course3) )
col_sum <- colSums(result_pass[,1:3])
barplot(colSums(result_pass[,1:3]), xlab = "Courses", ylab = "Total Marks", col = coul, ylim=range(pretty(c(0, col_sum))), main = "Passed courses ")
# Bar graph for Failed courses
result_fail <-data %>% filter(Result=='Fail') %>% summarize(c1_tot=sum(course1),
c2_tot = sum(course2), c3_tot = sum(course3) )
col_sum <- colSums(result_fail[,1:3])
barplot(colSums(result_fail[,1:3]), xlab = "Courses", ylab = "Total Marks", col = coul, ylim=range(pretty(c(0, col_sum))), main = "Failed courses ")
Any suggestion for which I can merge both the above plots and create grouped bar graph for Pass and Fail courses.
CodePudding user response:
It's probably easier than you think. Just put the data directly in aggregate
and use as formula . ~ Result
, where .
means all other columns. Removing first column [-1]
and coerce as.matrix
(because barplot
eats matrices) yields exactly the format we need for barplot
.
This is the basic code:
barplot(as.matrix(aggregate(. ~ Result, data, sum)[-1]), beside=TRUE)
And here with some visual enhancements:
barplot(as.matrix(aggregate(. ~ Result, data, sum)[-1]), beside=TRUE, ylim=c(0, 70),
col=hcl.colors(2, palette='viridis'), legend.text=sort(unique(data$Result)),
names.arg=names(data)[-1], main='Here could be your title',
args.legend=list(x='topleft', cex=.9))
box()
Data:
data <- structure(list(Result = c("pass", "pass", "Fail", "Fail", "pass",
"Fail"), course1 = c(15L, 12L, 9L, 3L, 14L, 5L), course2 = c(17L,
14L, 13L, 2L, 11L, 0L), course3 = c(18L, 19L, 3L, 0L, 20L, 7L
)), class = "data.frame", row.names = c(NA, -6L))