I have the following data set:
time <- c(0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5)
value <- c(10,8,6,5,3,2,12,10,6,5,4,2,20,15,16,9,2,2)
group <- c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3)
data <- data.frame(time, value, group)
I want to create a new column called data$diff
that is equal to data$value
minus the value of data$value
when data$time == 0
within each group.
I am beginning with the following code
for(i in 1:nrow(data)){
for(n in 1:max(data$group)){
if(data$group[i] == n) {
data$diff[i] <- ???????
}
}
}
But cannot figure out what to put in place of the question marks. The desired output would be this table: https://i.stack.imgur.com/1bAKj.png
Any thoughts are appreciated.
CodePudding user response:
Since in your example data$time == 0
is always the first element of the group, you can use this data.table
approach.
library(data.table)
setDT(data)
data[, diff := value[1] - value, by = group]
In case that data$time == 0
is not the first element in each group you can use this:
data[, diff := value[time==0] - value, by = group]
Output:
> data
time value group diff
1: 0 10 1 0
2: 1 8 1 2
3: 2 6 1 4
4: 3 5 1 5
5: 4 3 1 7
6: 5 2 1 8
7: 0 12 2 0
8: 1 10 2 2
9: 2 6 2 6
10: 3 5 2 7
11: 4 4 2 8
12: 5 2 2 10
13: 0 20 3 0
14: 1 15 3 5
15: 2 16 3 4
16: 3 9 3 11
17: 4 2 3 18
18: 5 2 3 18
CodePudding user response:
Here is a short way to do it with dplyr
.
library(dplyr)
data %>%
group_by(group) %>%
mutate(diff = value[which(time == 0)] - value)
Which gives
# Groups: group [3]
time value group diff
<dbl> <dbl> <dbl> <dbl>
1 0 10 1 0
2 1 8 1 2
3 2 6 1 4
4 3 5 1 5
5 4 3 1 7
6 5 2 1 8
7 0 12 2 0
8 1 10 2 2
9 2 6 2 6
10 3 5 2 7
11 4 4 2 8
12 5 2 2 10
13 0 20 3 0
14 1 15 3 5
15 2 16 3 4
16 3 9 3 11
17 4 2 3 18
18 5 2 3 18
CodePudding user response:
library(dplyr)
vals2use <- data %>%
group_by(group) %>%
filter(time==0) %>%
select(c(2,3)) %>%
rename(value4diff=value)
dataNew <- merge(data, vals2use, all=T)
dataNew$diff <- dataNew$value4diff-dataNew$value
dataNew <- dataNew[,c(1,2,3,5)]
dataNew
group time value diff
1 1 0 10 0
2 1 1 8 2
3 1 2 6 4
4 1 3 5 5
5 1 4 3 7
6 1 5 2 8
7 2 0 12 0
8 2 1 10 2
9 2 2 6 6
10 2 3 5 7
11 2 4 4 8
12 2 5 2 10
13 3 0 20 0
14 3 1 15 5
15 3 2 16 4
16 3 3 9 11
17 3 4 2 18
18 3 5 2 18
CodePudding user response:
Here is a base R approach.
within(data, diff <- ave(
seq_along(value), group,
FUN = \(i) value[i][time[i] == 0] - value[i]
))
Output
time value group diff
1 0 10 1 0
2 1 8 1 2
3 2 6 1 4
4 3 5 1 5
5 4 3 1 7
6 5 2 1 8
7 0 12 2 0
8 1 10 2 2
9 2 6 2 6
10 3 5 2 7
11 4 4 2 8
12 5 2 2 10
13 0 20 3 0
14 1 15 3 5
15 2 16 3 4
16 3 9 3 11
17 4 2 3 18
18 5 2 3 18