Home > Software engineering >  How Solve Iterative Method For Hanoi Problem
How Solve Iterative Method For Hanoi Problem

Time:12-31

I'm trying to solve the Hanoi problem using an iterative method. I try to do this by using two for nested loops, so as to repeat n - 1 steps in each loop, where n is the number of moves. I think I have well posed the problem by using two for, but I don't understand how to change the order of the towers at each pass. Can anyone help me with this task?

inizio is start, fine is end and supp is support

#include <stdlib.h>
#include <stdio.h>

void tower_Organizer(int *inizio, int *fine, int *supp);
void hanoi_Iter(int n, int inizio, int fine, int supp);

int main(void){
    
    int n;
    
    printf("%s\n" ,"inserisci un nuero positivo");
    scanf("%d", &n);
    
    hanoi_Iter(n, 1, 2, 3);
    
    return 0;
    
}


void hanoi_Iter(int n, int inizio, int fine, int supp){
    
    for(int i = 1 ; i <= n ; i  ){
        
        for(int j = 1 ; j <= i - 1 ; j  ){
            
            printf("%d -> %d\n", inizio, fine);
            tower_Organizer(&inizio, &fine, &supp);

                
        }
        
        printf("%d -> %d\n", inizio, fine);
        tower_Organizer(&inizio, &fine, &supp);

    }       
        
}


void tower_Organizer(int *inizio, int *fine, int *supp){
    
    static int count = 1;
    
    int c = count % 6;
    
    switch( c ){
        
        case 0:
            *inizio = 1;
            *fine = 2;
            *supp = 3;
            break;
        case 1:
            *inizio = 1;
            *fine = 3;
            *supp = 2;
            break;
        case 2:
            *inizio = 2;
            *fine = 3;
            *supp = 1;
            break;
        case 3:
            *inizio = 1;
            *fine = 2;
            *supp = 3;
            break;
        case 4:
            *inizio = 3;
            *fine = 1;
            *supp = 2;
            break;
        case 5:
            *inizio = 3;
            *fine = 2;
            *supp = 1;
            break;
        
    }
    
    count  ;
    
    
}  

  

CodePudding user response:

The number of moves is 2

  • Related