Home > Software engineering >  Drop top level header on selected columns and turn selected column names into column values
Drop top level header on selected columns and turn selected column names into column values

Time:01-03

I have a dataframe defined as follows:

cols = pd.MultiIndex.from_tuples([("unnamed_0", "b"), ("unnamed_1", "c"),('total','A'),('total','B'),('total','C')])
df = pd.DataFrame([[1,2,3,4,5], [3,4,5,6,7],[5,6,8,9,10],[7,8,11,12,13],[9,19,13,24,25]], columns=cols)
df

which is:

  unnamed_0 unnamed_1 total        
          b         c     A   B   C
0         1         2     3   4   5
1         3         4     5   6   7
2         5         6     8   9  10
3         7         8    11  12  13
4         9        19    13  24  25

What I want is to transform this dataframe into:

d = {'b': [1, 1,1,3,3,3,5,5,5,7,7,7,9,9,9], 'c': [2,2,2,4,4,4,6,6,6,8,8,8,19,19,19],'total':[3,4,5,5,6,7,8,9,10,11,12,13,13,24,25],'type':['A','B','C','A','B','C','A','B','C','A','B','C','A','B','C']}
df2 = pd.DataFrame(d)
print(df2)

That is:

    b   c  total type
0   1   2      3    A
1   1   2      4    B
2   1   2      5    C
3   3   4      5    A
4   3   4      6    B
5   3   4      7    C
6   5   6      8    A
7   5   6      9    B
8   5   6     10    C
9   7   8     11    A
10  7   8     12    B
11  7   8     13    C
12  9  19     13    A
13  9  19     24    B
14  9  19     25    C

I tried to drop the two unnamed_ columns at first using

df = df.xs(["unnamed_0","unnamed_1"], axis=1, drop_level=True)

but that didn't go to well as it dropped everything but what I wanted. As for the transformation of level 2 header into column values, I thought of using something like df.T.unstack().reset_index(level=1, name='type').rename(columns={'level_1':'A'})[['type','A']] as in this example:

df=pd.DataFrame(index=['x','y'], data={'a':[1,2],'b':[3,4]})

   a  b
x  1  3
y  2  4

df.T.unstack().reset_index(level=1, name='c1').rename(columns={'level_1':'c2'})[['c1','c2']]
    
   c1 c2
x   1  a
x   3  b
y   2  a
y   4  b
​

but I did not manage to apply it to multi-level header dataframes.

Any help would be appreciated.

CodePudding user response:

Use melt:

>>> df.droplevel(0, axis=1).melt(['b', 'c'], var_name='type', value_name='total')
    b   c type  total
0   1   2    A      3
1   3   4    A      5
2   5   6    A      8
3   7   8    A     11
4   9  19    A     13
5   1   2    B      4
6   3   4    B      6
7   5   6    B      9
8   7   8    B     12
9   9  19    B     24
10  1   2    C      5
11  3   4    C      7
12  5   6    C     10
13  7   8    C     13
14  9  19    C     45
  • Related