I'm not being able to find the correct configuration to pass to a tf.keras.layers.Dot to make a pairwise dot product when the entries each have lists of values, like from a listwise learning to rank model. For instance, suppose:
repeated_query_vector = [
[[1, 2], [1, 2]],
[[3, 4], [3, 4]]
]
document_vectors = [
[[5, 6], [7, 8]],
[[9, 10], [11, 12]],
]
Calling tf.keras.layers.Dot(axes=??)([repeated_query_vector, document_vectors]) I want the output to be like:
[
[1*5 2*6, 1*7 2*8]
[3*9 4*10, 3*11 4*12]
]
All examples I found in the documentation have one dimension less than my use case. What would be the correct value of axes for this call?
CodePudding user response:
You should be able to solve this with tf.keras.layers.Multiply()
and tf.reshape
:
import tensorflow as tf
repeated_query_vector = tf.constant([
[[1, 2], [1, 2]],
[[3, 4], [3, 4]]
])
document_vectors = tf.constant([
[[5, 6], [7, 8]],
[[9, 10], [11, 12]],
])
multiply_layer = tf.keras.layers.Multiply()
result = multiply_layer([repeated_query_vector, document_vectors])
shape = tf.shape(result)
result = tf.reduce_sum(tf.reshape(result, (shape[0], shape[1] * shape[2])), axis=1, keepdims=True)
tf.Tensor(
[[ 40]
[148]], shape=(2, 1), dtype=int32)
Or with tf.keras.layers.Dot
and tf.reshape
:
import tensorflow as tf
repeated_query_vector = tf.constant([
[[1, 2], [1, 2]],
[[3, 4], [3, 4]]
])
document_vectors = tf.constant([
[[5, 6], [7, 8]],
[[9, 10], [11, 12]],
])
dot_layer = tf.keras.layers.Dot(axes=1)
result = dot_layer([tf.reshape(repeated_query_vector, (repeated_query_vector.shape[0], repeated_query_vector.shape[1] * repeated_query_vector.shape[2])),
tf.reshape(document_vectors, (document_vectors.shape[0], document_vectors.shape[1] * document_vectors.shape[2]))])
tf.Tensor(
[[ 40]
[148]], shape=(2, 1), dtype=int32)