I'm trying to reproduce the plot from Roland's code with lmer
instead of nlme
model but I'm getting an error with the predict
function:
library(nlme)
library(lme4)
library(ggplot2)
fm2 <- lmer(distance ~ age Sex (1|Subject), data = Orthodont)
newdat <- expand.grid(Sex=unique(Orthodont$Sex),
age=c(min(Orthodont$age),
max(Orthodont$age)))
p <- ggplot(Orthodont, aes(x=age, y=distance, colour=Sex))
geom_point(size=3)
geom_line(aes(y=predict(fm2), group=Subject, size="Subjects"))
geom_line(data=newdat, aes(y=predict(fm2, level=0, newdata=newdat), size="Population"))
scale_size_manual(name="Predictions", values=c("Subjects"=0.5, "Population"=3))
theme_bw(base_size=22)
This is the error I get:
Error in eval(predvars, data, env) : object 'Subject' not found
In addition: Warning message:
In predict.merMod(fm2, level = 0, newdata = newdat) :
unused arguments ignored
CodePudding user response:
If you want to plot subject-level predictions, you would need to include Subject
in your prediction frame:
pframe <- with(Orthodont,
expand.grid(Sex=unique($Sex),
age=range(age),
Subject=unique(Subject))
)
Alternately you could include re.form = ~0
in your predict
call: this is equivalent to the (ignored!) level=0
specification in your current code, which only works for lme
...