Home > Software engineering >  Filter dataset from multiple columns of another dataset
Filter dataset from multiple columns of another dataset

Time:02-28

Consider this df 'A':

     name  index     pet
0   Alice      2     dog
1     Bob      5     cat
2   Chuck     12     cat
3   Daren      4    bird
4   Emily      9    bird

And then this df 'B':

    pet
0   dog
1   cat
2   dog
3  bird
4   cat
5   cat
6  bird
7   cat
8  bird
9  bird
...

If the value in column 'index' from 'A' and the value from column 'pet' match the actual index of dataset 'B' together with the value in column 'pet' from dataset B, then keep those values, and filter out all the rest.

The resulting dataframe should look like this:

    pet
2   dog
5   cat
9  bird
...

What is the most efficient way to do this? Any help is appreciated.

Data:

dfA:

{'name': ['Alice', 'Bob', 'Chuck', 'Daren', 'Emily'],
 'index': [2, 5, 12, 4, 9],
 'pet': ['dog', 'cat', 'cat', 'bird', 'bird']}

dfB:

{'pet': ['dog', 'cat', 'dog', 'bird', 'cat', 'cat', 'bird', 'cat', 'bird', 'bird']}

CodePudding user response:

You could do a merge.

import pandas as pd

dfa = pd.DataFrame({'name': {0: 'Alice', 1: 'Bob', 2: 'Chuck', 3: 'Daren', 4: 'Emily'},
 'index': {0: 2, 1: 5, 2: 12, 3: 4, 4: 9},
 'pet': {0: 'dog', 1: 'cat', 2: 'cat', 3: 'bird', 4: 'bird'}})

dfb = pd.DataFrame({'pet': {0: 'dog',
  1: 'cat',
  2: 'dog',
  3: 'bird',
  4: 'cat',
  5: 'cat',
  6: 'bird',
  7: 'cat',
  8: 'bird',
  9: 'bird'}})

dfm = pd.merge(dfa, dfb, left_on=['index', 'pet'], right_on=[dfb.index, 'pet'])
dfm = dfm[['index', 'pet']].set_index('index', drop=True)

Output:

    pet
index   
2   dog
5   cat
9   bird

CodePudding user response:

One option is to reindex dfB with dfA['index'] and evaluate where the "pet" values match:

tmp = dfB.reindex(dfA['index'])
out = tmp[tmp['pet'].eq(dfA.set_index('index')['pet'])].rename_axis([None])

Another option is map dfB.index to "pet" column in dfA and create a boolean mask that shows where the "pet" columns match; then filter dfB:

out = dfB[dfB.index.map(dfA.set_index('index')['pet']) == dfB['pet']]

Output:

    pet
2   dog
5   cat
9  bird

CodePudding user response:

Here is a way using to_records() with isin()

(df2.loc[pd.Series(df2.reset_index()
                   .to_records(index=False)
                   .tolist())
         .isin(df1[['index','pet']]
               .to_records(index=False)
               .tolist())])

Output:

    pet
2   dog
5   cat
9  bird
  • Related