I would like to correct the values in hyperspectral readings from a cameara using the formula described over
CodePudding user response:
Your two methods don't agree because in the first method you used
white_nparr_rep = white_nparr.repeat(43, axis=0)
but the second method corresponds to using
white_nparr_rep = np.tile(white_nparr, (43, 1, 1))
If the first method is correct, you'll have to adjust the second method to act accordingly. Perhaps
for i in range(int(data_scale / ref_scale)):
data_nparr[i*ref_scale:(i 1)*ref_scale] =
np.divide
(
np.subtract(data_nparr[i*ref_scale:(i 1)*ref_scale], dark_nparr[i]),
np.subtract(white_nparr[i], dark_nparr[i])
)
A simple example with 2-d arrays that shows the difference between repeat
and tile
:
In [146]: z
Out[146]:
array([[ 1, 2, 3, 4, 5],
[11, 12, 13, 14, 15]])
In [147]: np.repeat(z, 3, axis=0)
Out[147]:
array([[ 1, 2, 3, 4, 5],
[ 1, 2, 3, 4, 5],
[ 1, 2, 3, 4, 5],
[11, 12, 13, 14, 15],
[11, 12, 13, 14, 15],
[11, 12, 13, 14, 15]])
In [148]: np.tile(z, (3, 1))
Out[148]:
array([[ 1, 2, 3, 4, 5],
[11, 12, 13, 14, 15],
[ 1, 2, 3, 4, 5],
[11, 12, 13, 14, 15],
[ 1, 2, 3, 4, 5],
[11, 12, 13, 14, 15]])
Off topic postscript: I don't know why the author of the page that you linked to writes NumPy expressions as (for example):
corrected_nparr = np.divide(
np.subtract(data_nparr, dark_nparr),
np.subtract(white_nparr, dark_nparr))
NumPy allows you to write that as
corrected_nparr = (data_nparr - dark_nparr) / (white_nparr - dark_nparr)
whick looks much nicer to me.