Let's say I have 3 list:
l1 = ["a", "b", "c"]
l2 = ["c", "e", "f"]
l3 = ["c", "b", "a"]
For Jaccard similarity, I'm using the following function:
def jaccard_similarity(list1, list2):
intersection = len(list(set(list1).intersection(list2)))
union = (len(set(list1)) len(set(list2))) - intersection
return float(intersection) / union
How can I calculate the Jaccard similarity for all combinations, that is:
(l1,l1), (l1,l2), (l1, l3)
(l2,l1), (l2,l2), (l2, l3)
(l3,l1), (l3,l2), (l3, l3)
I want to avoid doing this manually for each pair of lists. Also, the final output needs to be a 3x3
matrix.
CodePudding user response:
You can drop the list
from list(set(...))
in your original function. Also no need to cast intersection
to a float
as you are using the "float division operator":
def jaccard_similarity(list1, list2):
intersection = len(set(list1).intersection(list2))
union = (len(set(list1)) len(set(list2))) - intersection
return intersection / union
You can use product
from the itertools
module to generate pairs of lists, and consume them using starmap
with your function:
from itertools import product, starmap
l1 = ['a', 'b', 'c']
l2 = ['c', 'e', 'f']
l3 = ['c', 'b', 'a']
inputs = product([l1, l2, l3], [l1, l2, l3])
result = list(starmap(jaccard_similarity, inputs))
print(result)
Output:
[1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0]
Next, to create a matrix you can take a look at the grouper
recipe from the documentation of itertools
: https://docs.python.org/3/library/itertools.html#itertools-recipes
Here's a simplified example of the grouper
function:
def group_three(it):
iterators = [iter(it)] * 3
return zip(*iterators)
print(list(group_three(result)))
Output:
[(1.0, 0.2, 1.0), (0.2, 1.0, 0.2), (1.0, 0.2, 1.0)]