I have the following dataframe with multiple dictionaries in a list in the Rules column.
SetID SetName Rules
0 Standard_1 [{'RulesID': '10', 'RuleName': 'name_abc'}, {'RulesID': '11', 'RuleName': 'name_xyz'}]
1 Standard_2 [{'RulesID': '12', 'RuleName': 'name_arg'}]
The desired output is:
SetID SetName RulesID RuleName
0 Standard_1 10 name_abc
0 Standard_1 11 name_xyz
1 Standard_2 12 name_arg
It might be possible that there are more than two dictionaries inside of the list.
I am thinking about a pop, explode or pivot function to build the dataframe but I have no clue how to start.
Each advice will be very appreciated!
EDIT: To build the dataframe you can use the follwing dataframe constructor:
# initialize list of lists
data = [[0, 'Standard_1', [{'RulesID': '10', 'RuleName': 'name_abc'}, {'RulesID': '11', 'RuleName': 'name_xyz'}]], [1, 'Standard_2', [{'RulesID': '12', 'RuleName': 'name_arg'}]]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['SetID', 'SetName', 'Rules'])
CodePudding user response:
You can use explode
:
tmp = df.explode('Rules').reset_index(drop=True)
df = pd.concat([tmp, pd.json_normalize(tmp['Rules'])], axis=1).drop('Rules', axis=1)
Output:
>>> df
SetID SetName RulesID RuleName
0 0 Standard_1 10 name_abc
1 0 Standard_1 11 name_xyz
2 1 Standard_2 12 name_arg
One-liner version of the above:
df.explode('Rules').reset_index(drop=True).pipe(lambda x: pd.concat([tmp, pd.json_normalize(tmp['Rules'])], axis=1)).drop('Rules', axis=1)